“魔法子弹”ADC药物设计,源头的魔力

2022-10-31
抗体药物偶联物抗体小分子药物免疫疗法
“魔法子弹”ADC药物的成分包括肿瘤抗原特异性单抗、稳定的化学连接头(linker)以及有效的细胞毒性分子(也称载荷)。在制备和生产过程中,需要经历多个合成步骤,溶于多种溶剂,小分子毒素需要在这些过程中保持化学结构和性质稳定。图:ADC 药物作用机制ADC药物的原理虽然简单,但实际的研发及工业化生产过程中需要考虑的因素众多。一款理想的ADC药物的设计需要考虑靶点、抗体、linker、payload、偶联技术及它们之间的合理组合,ADC设计时,诸多因素需要考虑,复杂ADC药物的成功通常取决于五大要素的设计。靶向抗原靶点的选择是ADC设计的起点,也是ADC适应症选择的决定性因素之一,靶抗原应具有肿瘤细胞高水平表达,正常组织中不表达或低表达的特征。理论上ADC药物可在肿瘤细胞外释放毒素,不经过细胞内在化,通过“旁观者效应”对肿瘤细胞造成杀伤。但实际上目前大部分ADC药物疗效的实现均是以内在化后的药物释放为基础。ADC药物中的抗体和肿瘤细胞表面抗原结合后,ADC-抗原复合物需能有效诱导内在化过程,进入肿瘤细胞内,并通过适当的细胞内转运和降解过程,实现小分子药物的有效释放。ADC理想的抗原的脱落(Shedding)情况还应该尽可能地少,以防止游离的抗原在循环中与抗体结合。靶向抗原的选择是ADC药物设计的关键一环,需满足:1、特异性,肿瘤细胞高表达、正常细胞低表达或不表达;2、靶向抗原需为肿瘤细胞表面抗原;3、高效诱导内在化过程(internalization)等。近些年,ADC药物研发的热点已经从血液瘤转移到实体瘤,多个靶点在多种肿瘤类型中都展现出了很好的治疗效果,有成为新一代广谱抗癌药的潜力,因此也成为了当前ADC药物研发的热门靶点。ADC药物靶点也从单纯的HER2过度竞争,转到多个新靶点不断涌现,如PSMAROR1、c-MET、FRαNectin-4LIV-1等。抗体抗体最关键的是能够与肿瘤细胞表面的靶抗原特异性结合,并能够被高效内化进入细胞。可以直接在已经上市的单抗的基础上进行药物开发,如已经上市的罗氏T-DM1就是在其公司重磅药物赫赛汀(曲妥珠单抗)的基础上研制的;也可以自主开发特异性更好的单抗。IgG1在与靶细胞结合后能够诱导ADCC和CDC等多种免疫反应,继续对肿瘤细胞进行杀伤,所以研发人员偏爱选择IgG1亚型的抗体。ADC抗体部分的理想特性:1、对所选抗原具有高度特异性,若缺乏特异性可能会造成脱靶毒性或被过早清除。2、与靶向抗原的高亲和力,靶抗原具有足够的特异性以及结合亲和力,并可实现有效的内化(internalisation,ADC-靶抗原复合物需要通过受体介导的内吞作用被内化,从而使其在细胞内释放有效的细胞毒性载荷)3、具有最小化的免疫原性,从而保证ADC药物在血液中有较长循环时间以及顺利进入肿瘤细胞。4、具有较长的循环半衰期。连接子连接头(linker)负责连接细胞毒性载荷与单抗,并在体循环中维持ADC的稳定性。连接头(linker)的化学特性以及偶联位点在ADC的稳定性、药代动力学和药效学特性以及治疗窗口方面起着至关重要的作用。Linker在ADC体内循环过程中应足够稳定,同时在进入靶细胞后又能将小分子药物以高效活性的形式有效释放。一个理想的连接头(linker)既要具有足够的稳定性,以保证ADC分子不过早分裂,安全通过血液循环,到达目标位置;也要能够在内化过程中快速断裂,以释放毒性载荷。根据载荷的释放机制,目前可用的连接头(linker)被分为可切(cleavable)和不可切(noncleavable)两类。连接子需要考虑稳定性和释放效率的平衡。可裂解连接子释放效率更高,不可裂解连接子更具稳定性优势。前者依赖于生理环境释放载荷,如gemtuzumaboz ogamicin中依赖低pH值的酸不稳定连接头、brentuximab vedotin中依赖蛋白水解作用的蛋白酶可切连接头以及mirvetuximab soravtansine中依赖较高细胞内谷胱甘肽浓度的二硫化物连接头。不可切的连接头是与单抗中的氨基酸残基形成不可还原的键,因此在血液中更稳定;这类连接头(如硫醚连接头)依赖于单抗的溶酶体降解来释放有效载荷。具代表性的不可裂解连接子是N-琥珀酰亚胺基-4-(N-马来酰亚胺甲基)C6H12-1-羧酸盐(SMCC),Kadcyla就是使用的此类Linker。此类Linker的分解代谢物主要是Lys-SMC-DM1,通常不能发挥旁观者效应。随着相关技术的发展,目前的研究主要集中在可切割的Linker上,可裂解Linker主要包括酶依赖性和化学依赖性两大类。DS-8201DS-8201就是采用的可裂解linker,分解代谢物可以穿过细胞膜发挥旁观者效应。连接头的偶联特性对控制ADC的治疗窗口至关重要。ADC的药物/抗体比(drug to antibody ratio, DAR)或粘附到单抗上的毒性药物的数量决定着ADC的效力和毒性。虽然高载药量可以增加ADC的效力,但也会增加脱靶效应。为了克服生产过程中产生各种不同DAR的ADC药物,一些研究采用了位点特异性偶联的创新方法,以减少可变性,改善偶联稳定性和药代动力学特性,最终生产出更相同的ADC产品。小分子毒素选择ADC有效毒性载荷的基本参数包括偶联性、溶解度和稳定性。被选择的毒性分子的结构应该能够保证其可与连接头(linker)偶联,此外,毒性分子的水溶性以及在血液中的长期稳定性非常重要,因为ADCs是在水溶液中制备并通过静脉注射的。小分子毒素是ADC药物发挥杀伤活性的主要成分。在选择小分子毒素时需综合考虑毒性、可修饰性等多个因素:1、与一般化药相比,具有更高毒性;2、可修饰性;3、适当的亲疏水平衡;4、高稳定性等。小分子毒素对于肿瘤细胞应具有高效的杀伤作用。大致分为靶向微管蛋白和靶向DNA两大类。一般要求毒素毒性足够强,IC50值在0.01-0.1nM,ADC药物使用的毒素需要有足够的水溶性及血清中的稳定性、有能够和linker偶联的基团、对溶酶体反应不敏感等特点,它们难以单独作为小分子药物使用,需要抗体内化后在细胞内发挥强大的杀伤能力。靶向DNA的毒性分子包括duocarmycins、calicheamicinspyrrolobenzodiazepines(PBDs)SN-38(irinotecan的活性代谢物)等。其中,calicheamicins的作用机制是诱导双键断裂,duocarmycins和PBDs的作用机制是导致DNA烷基化。微管蛋白抑制剂MMAE(auristatins monomethyl auristatin E)和MMAF(monomethyl auristatin F)的作用是抑制微管聚合,导致G2/M期细胞周期阻滞。偶联技术ADC药物发展至今共经历了三代技术变革,在payload、抗体修饰以及偶联技术方面均有所突破,而第三代ADC朝安全性、稳定性方向发展,最为突出的特点就是实现了定点偶联,产生均一的抗体偶联物。表:部分定点偶联技术偶联技术通过连接子将抗体和小分子毒素连接到一起,涉及化学反应、抗体修饰与改造等相关技术。ADC药物所采用的偶联技术与其最终的药物抗体比率(Drug to Antibody Ratio;DAR)密切相关,而DAR的数值及其分布会显著影响ADC药物性质。DAR过大可能导致ADC药物聚集,进而在循环系统中被清除;DAR过小,可能导致ADC药物无法达到最佳治疗效果。DAR在2~4之间是ADC药物的最优选。目前,常用的偶联技术可分为随机偶联和定点偶联两大类。DS-8201DS-8201采用定点偶联技术,药物抗体比高达8,具有更好疗效。非定点偶联法是早期 ADC 研究中使用的方法,由于非定点偶联过程是随机进行的,偶联的payload个数和偶联位置都不能确定,最终产生的是不同DAR的ADC混合物,这些混合的异质性ADC动力学性质不一,稳定性差,易发生聚集,且细胞毒素易脱落而产生非治疗性毒副作用,治疗窗较窄。基于上述难题定点偶联技术应运而生,定点偶联能在抗体的特定位点连接payload,极大提高ADC 的均一性,降低了毒素脱落导致的非治疗性毒副作用,因而成为今后 ADC 药物重要的探索方向之一。表ADC设计原则ADC药物发展至今共经历了三代技术变革,在payload、抗体修饰以及偶联技术方面均有所突破,但仍有诸多难点需要攻克。技术平台是ADC企业的首要壁垒。毒素种类、偶联化学方法、连接子的稳定性均对药物最终的临床效果有重大影响。例如,毒性过低的毒素会限制药物的临床有效性;疏水性过强的毒素会导致ADC 分子发生聚集,提高成药难度;均一性、可控性较差的偶联反应会导致ADC 药物异质性过高,降低临床有效性;稳定性差的连接子会增大脱靶毒性,带来较大的安全性风险。在化疗、靶向和免疫时代之后,以细胞毒性药物和靶向单抗偶联成药的ADC型药物以卓越的成绩打开了肿瘤的第四阶梯药物治疗时代。ADC自概念提出至今已超过100年,但是上市品种仍然较少。目前各种新型偶联药物:RDC、SMDC、PDC、ISAC、FDCACC、VDC、AOC、ABC等。此外ADeC、Pro-DC等新技术形式仍在不断出
更多内容,请访问原始网站
文中所述内容并不反映新药情报库及其所属公司任何意见及观点,如有版权侵扰或错误之处,请及时联系我们,我们会在24小时内配合处理。
靶点
立即开始免费试用!
智慧芽新药情报库是智慧芽专为生命科学人士构建的基于AI的创新药情报平台,助您全方位提升您的研发与决策效率。
立即开始数据试用!
智慧芽新药库数据也通过智慧芽数据服务平台,以API或者数据包形式对外开放,助您更加充分利用智慧芽新药情报信息。