Programmed death-ligand 1[PD-(L)1], cytotoxic T-lymphocyte associated protein 4 (CTLA-4), and lymphocyte-activation gene 3 (LAG-3) inhibitors are recent breakthroughs in cancer treatment, however not all patients benefit from it. Thus new therapies are under investigation, such as anti-TIGIT [anti-T-cell immunoreceptor with immunoglobulin (Ig) and immunoreceptor tyrosine-based inhibitory motif domains] antibodies. TIGIT is an immune checkpoint inhibiting lymphocyte T cells by several mechanisms. In vitro models showed its inhibition could restore antitumor response. Furthermore, its association with anti-PD-(L)1 therapies could synergistically improve survival. We carried out a review of the clinical trial about TIGIT referenced in the PubMed database, finding three published clinical trials on anti-TIGIT therapies. Vibostolimab was evaluated in a phase I alone or in combination with pembrolizumab. The combination had an objective response rate of 26% in patients with a non-small-cell lung cancer (NSCLC) naïve of anti-programmed cell death protein 1 (anti-PD-1). Etigilimab was tested in a phase I alone or in combination with nivolumab, but the study was stopped due to business reasons. In the phase II CITYSCAPE trial, tiragolumab demonstrated higher objective response rate and progression-free survival in combination with atezolizumab than atezolizumab alone in advanced PD-L1-high NSCLC. The ClinicalTrials.gov database references 70 trials of anti-TIGIT in patients with cancer, 47 of them with ongoing recruitment. Only seven were phase III, including five about patients with NSCLC, mostly with combination therapy. Data from phase I-II trials highlighted that targeting TIGIT represents a safe therapeutic approach, with an acceptable toxicity profile maintained when adding anti-PD-(L)1 antibodies. Frequent adverse events were pruritus, rash, and fatigue. Grade 3-4 adverse events were reported in nearly one in three patients. Anti-TIGIT antibodies are under development as a novel immunotherapy approach. A promising research area includes the combination with anti-PD-1 therapies in advanced NSCLCs.