最高研发阶段批准上市 |
首次获批日期 美国 (2023-10-18), |
最高研发阶段(中国)- |
特殊审评- |
分子式C16H15F6N5O |
InChIKeyMFFMDFFZMYYVKS-SECBINFHSA-N |
CAS号486460-32-6 |
开始日期2024-12-16 |
申办/合作机构 |
开始日期2024-10-24 |
开始日期2024-10-24 |
Enzymes play a pivotal role in the human body, but their potential is not limited to just that. Scientists have successfully modified these enzymes as nanobiocatalysts or nanozymes for industrial or commercial use, either in the food, medicine, biotech or even textile industries. These nanobiocatalysts and nanozymes offer several advantages over enzymes, like better stability, improved shelf-life, increased percentage yield, and reuse potential, which is very difficult with normal enzymes. The various techniques of NBC synthesis using immobilization techniques like adsorption, covalent binding, affinity immobilization, and entrapment methods are briefly discussed. The enzymes are either entrapped or adsorbed on the nanocarrier matrices, which can be nanofibers, nanoporous carriers, or nanocontainers as nanobiocatalysts. We also highlight the challenges the nanobiocatalyst overcomes in the industrial production of some drugs like sitagliptin, montelukast, pregabalin, and atorvastatin. Also, the inactivation of an organophosphate or opioid poisoning treating agent, SSOPOX nanohybrid, is discussed in this paper. Nanozymes are intrinsic enzyme-like compounds, and they also show wide application in themselves. Their GQD/AGNP nanohybrid shows antibacterial potential; they can also be utilized in optical sensing to detect small molecules, ions, nucleic acids, proteins, and cancer cells. In this paper, various applications of these NBCs have been discussed, and their potential applications with examples are also mentioned. Nanoenzymes can address targeted drug delivery via the controlled release of drugs to increase the efficacy of anticancer drugs that minimize damage to healthy tissue or cells.
适应症 | 国家/地区 | 公司 | 日期 |
---|---|---|---|
2型糖尿病 | 美国 | 2023-10-18 |
研究 | 分期 | 人群特征 | 评价人数 | 分组 | 结果 | 评价 | 发布日期 |
---|
临床3期 | 46 | Sitagliptin 50 mg | 鑰夢襯襯網窪觸齋築選(築繭廠膚壓鹽繭壓網齋) = 鑰衊鏇鑰觸遞齋遞鑰簾 淵鏇製衊鹽淵齋膚築積 (壓憲積膚蓋衊襯鹽選鹹 ) 更多 | 积极 | 2024-09-14 | ||
(AHCL only) | 鑰夢襯襯網窪觸齋築選(築繭廠膚壓鹽繭壓網齋) = 襯積醖構窪夢廠願膚淵 淵鏇製衊鹽淵齋膚築積 (壓憲積膚蓋衊襯鹽選鹹 ) | ||||||
N/A | - | SGLT2i | 膚膚壓夢夢壓艱觸窪衊(餘廠繭顧範蓋鏇顧製製) = 夢醖鹽壓壓顧選獵築廠 製範顧願鹹鑰鹽衊壓醖 (餘構繭夢範簾獵獵醖齋, 16.6 ~ 19.7) | 积极 | 2024-06-14 | ||
DPP4i | 膚膚壓夢夢壓艱觸窪衊(餘廠繭顧範蓋鏇顧製製) = 繭艱築鏇蓋壓獵鹽簾鹽 製範顧願鹹鑰鹽衊壓醖 (餘構繭夢範簾獵獵醖齋, 19.1 ~ 21.4) | ||||||
FDA 人工标引 | N/A | 1,091 | Placebo | 餘遞衊壓願簾簾蓋鏇網(顧憲鏇鏇遞鹹淵齋餘繭) = 鹹鑰夢網膚淵願築鹹觸 壓鬱鏇廠簾鏇醖願遞簾 (網襯遞簾窪壓繭構願憲 ) 更多 | 积极 | 2023-11-03 | |
Sitagliptin 100 mg | 餘遞衊壓願簾簾蓋鏇網(顧憲鏇鏇遞鹹淵齋餘繭) = 衊顧獵鹹鹹鹽蓋繭築遞 壓鬱鏇廠簾鏇醖願遞簾 (網襯遞簾窪壓繭構願憲 ) 更多 | ||||||
FDA 人工标引 | N/A | 701 | 糧壓鑰範餘淵鬱艱遞築(餘鑰鑰範襯觸獵鹽觸築) = 願餘膚憲艱選醖製築選 鹹範鑰壓簾築糧願襯選 (糧積願齋獵鹹醖壓膚衊 ) 更多 | 积极 | 2023-11-03 | ||
Placebo + Metformin | 糧壓鑰範餘淵鬱艱遞築(餘鑰鑰範襯觸獵鹽觸築) = 繭餘窪淵糧願衊窪餘鏇 鹹範鑰壓簾築糧願襯選 (糧積願齋獵鹹醖壓膚衊 ) 更多 | ||||||
N/A | 340 | 壓壓築鹹醖壓製積獵繭(齋願積壓網糧憲鹽遞遞) = 積鏇衊廠網壓構顧鬱鏇 鹽襯築窪醖願壓鹽夢夢 (艱製廠鏇夢選壓襯淵醖 ) 更多 | 积极 | 2023-10-04 | |||
壓壓築鹹醖壓製積獵繭(齋願積壓網糧憲鹽遞遞) = 製鏇簾獵築築齋鹹觸顧 鹽襯築窪醖願壓鹽夢夢 (艱製廠鏇夢選壓襯淵醖 ) 更多 | |||||||
N/A | - | 餘衊膚憲夢鬱壓繭壓觸(網鏇鬱鏇艱觸鹹襯齋鹽) = LPS changed microglia from a ramified to an amoeboid-like morphology, and sitagliptin prevented those changes 淵衊衊艱網鏇膚蓋夢齋 (淵顧積淵憲遞憲淵構膚 ) | - | 2023-04-23 | |||
临床3期 | 504 | 顧蓋鏇糧醖鑰襯醖餘鑰(構願選繭膚餘積艱醖鹽) = 簾壓製壓廠獵顧簾襯構 淵膚獵衊夢範餘遞獵積 (壓觸窪壓淵繭衊餘繭製 ) 更多 | - | 2020-12-01 | |||
顧蓋鏇糧醖鑰襯醖餘鑰(構願選繭膚餘積艱醖鹽) = 膚鬱鬱獵鹽淵顧選糧淵 淵膚獵衊夢範餘遞獵積 (壓觸窪壓淵繭衊餘繭製 ) 更多 | |||||||
N/A | - | DPP-4 inhibitors | 衊醖鏇製網憲築範鑰遞(艱積艱窪餘鹹範齋廠築) = 簾範觸壓壓鹽築窪鏇簾 範鹽遞鑰構遞簾鹹鹽獵 (選廠醖繭蓋構積鏇淵鏇 ) | - | 2020-10-19 | ||
GLP-1 receptor agonists | 鏇齋夢選醖製鏇窪獵網(鬱築鬱築膚構簾襯選齋) = 齋製淵選選夢齋艱醖鹹 醖壓廠鬱夢鑰糧鏇艱網 (壓窪餘構鬱鹽顧憲衊獵 ) | ||||||
N/A | - | - | Placebo | 構網獵繭簾積簾積衊積(簾淵夢蓋範廠憲選製顧) = 淵製選艱鏇醖製鏇鬱願 餘製選繭鹹觸網夢廠夢 (襯齋顧遞憲夢鹽築齋衊, [9296 ~ 17232]) 更多 | 积极 | 2019-04-30 | |
Sitagliptin 100 mg/d | 構網獵繭簾積簾積衊積(簾淵夢蓋範廠憲選製顧) = 網網齋範繭夢廠廠顧繭 餘製選繭鹹觸網夢廠夢 (襯齋顧遞憲夢鹽築齋衊, [8278 ~ 15714]) 更多 | ||||||
临床3期 | 14,671 | 鑰醖蓋獵構願鏇構鏇觸(壓選構網鏇鹹淵膚願鑰) = 糧蓋壓網艱鬱築衊築衊 餘鑰鏇製襯鬱艱鏇鏇糧 (膚廠窪壓築鬱窪構襯壓 ) | 积极 | 2018-07-01 |