Previously, animal breeding prioritized enhancing key economic traits to improve production efficiency, leading to a gradual difference in meat quality. However, the genetic factors influencing meat quality remain unclear. To identify key genetic pathways contributing to meat quality, native Chinese yellow-feathered chicken (Qingyuan Partridge Chicken, QPC; female, n=10), and commercial chicken broiler (Cobb broiler, CB; female, n=10) were used for meat quality assessment through metabolomics, proteomics, and phosphoproteomics sequencing. The results show that QPC had lower pH (93.12%), shear force (81.46%), cooking loss (69.29%), moisture content (93.24%) and muscle fiber area (46.04%), but higher meat color values (a*(163.65%) and b*(250.27%)), drip loss (146.32%), and intramuscular fat content (382.01%) than CB (p < 0.05). Metabolomic, proteomic, and phosphoproteomic analyses were jointly conducted, revealing significant differences in energy metabolism strategies. Higher glycolytic enzyme activity was observed in QPC (ENO1, GAPDH, GPI, PFKM, PKM, and TPI1, p < 0.05), while more energetic phosphate compounds were stored in CB. CB had higher Na+/K+ Pump protein abundance (SCN4A, LOC107051305, ATP1B4, ATP12A, ATP1A1, and ATP1A2, p < 0.05) and phosphorylation (ATP1A2-Ser662, p < 0.05) and Ca2+ channel protein abundance (ATP2B4, SRL, CACNB1, CACNA1S, CACNA2D1, CAMK2G, LOC107050717 and TNNC2, p < 0.05) than QPC. In QPC, CAMKII autophosphorylation activated downstream protein and increased Ca2+. These results suggest CB is more contractile than QPC, contributing to meat quality between CB and QPC.