基于BCS分类测定药物的平衡溶解度、油水分配系数及渗透性

2023-02-06
一致性评价医药出海上市批准
点击上方的 行舟Drug ▲ 添加关注基于BCS分类测定药物的平衡溶解度、油水分配系数及渗透性来源《中国医药工业杂志》2022年作者张伟,张慧,熊静,许明哲,梁成罡中国食品药品检定研究院激素室国家药品监督管理局化学药品质量研究与评价重点实验室摘要测定了磷酸奥司他韦(2) 和索非布韦(3) 的平衡溶解度、油水分配系数和渗透性。采用摇瓶法,分别测定了2和3在pH 1.2、pH 4.5及pH 6.8缓冲液中的平衡溶解度,判断药物的溶解性;测定了2和3在不同pH条件下的正辛醇缓冲液体系中的油水分配系数;并通过平行人工膜体外渗透技术,测定了2和3在pH 5.0、pH 6.5及pH 7.4缓冲液中的渗透性。结果显示,2为高溶解性、高渗透性药物,油水分配系数受油水体积比影响较大;3为低溶解性、高渗透性药物,具有较高的脂溶性。然而,用相同方法测定甲基多巴(1) 时,由于样品稳定性的问题,该药物的溶解性未得出结论。此外,本研究阐述并分析了研究过程中可能出现的问题和影响因素,为WHO基本药物目录的建立提供了数据支持。关键词基本药物目录;平衡溶解度;摇瓶法;油水分配系数;渗透性_正文_人体生物等效性试验豁免适用于仿制药质量和疗效一致性评价中口服固体常释制剂申请生物等效性(bioequivalence,BE) 豁免[1—3],以国际公认的生物药剂学分类系统(BCS) 为依据[4]。而药物溶解性、肠道渗透性以及制剂溶出度是BCS系统的3个关键因素,其中高溶解性药物可作为固体口服制剂BE豁免的重要指标[5]。世界卫生组织(WHO) 于2009年公布了基本药物目录中的BCS分类,2011年美国FDA也总结归纳了一套BCS分类[6]。但是,由于WHO和美国FDA公布的BCS分类数据主要来源于文献收集,未经过试验验证。因此,WHO于2016年启动了BCS分类实验室验证项目[7],由于化合物品种繁多,共分配给全球9个实验室(包括本研究单位) 进行,本研究于2019~2021年完成了其中具有代表性的3个品种,即分别对甲基多巴(methyldopa,1) 、磷酸奥司他韦(oseltamivir phosphate,2) 以及索非布韦(sofosbuvir,3) 3种药物的平衡溶解度、油水分配系数以及渗透性进行了研究[8]。1~3均被纳入WHO基本药物目录中,化合物结构式见图1。1于1960年首次被发现,是一种2受体机动型心血管药物,临床主要用于治疗高血压妊娠型高血压先兆子痫。1片最早由日本米诺源发制药株式会社研发并获批上市,单次最大剂量为250 mg。2是神经氨酸酶抑制剂,即抗病毒类药物,2胶囊(商品名为达菲) 于1999年被美国FDA批准上市,并于2004年7月在中国上市,单次最大剂量为75 mg。3是美国吉利德科学公司研发的治疗慢性丙肝的新药,该药物于2013年经美国FDA批准上市,于2014年经欧洲药品管理局(EMA) 批准在欧盟各国上市,还未在中国上市,单次最大剂量为400 mg。目前平衡溶解度的测定方法主要有双指示剂滴定法、电位滴定法和酸碱滴定法等[9—10]。本研究采用摇瓶法和高效液相色谱法(HPLC) 法测定药物的平衡溶解度,并通过药物溶解性与渗透性评价系统(平行人工膜渗透技术,PAMPA[11]) 对3种药物的油水分配系数及渗透性进行了测定,同时对研究过程中发现的问题进行了分析与讨论,确定了药物的BCS分类,以期为基本药物目录的制定提供了数据支持。1仪器与试药e 2695型高效液相色谱系统和2489型UV/Vis检测器(美国Waters公司) ;ME 155 DU型电子天平和S 470-K型pH计(瑞士Mettler Toledo公司) ;TURBISCAN TOWER型多重光散射仪-稳定性分析仪(法国Formulaction公司) ;µDISS Profiler药物溶解性与渗透性评价系统(美国Pion公司) ;聚四氟乙烯滤膜(美国安捷伦公司,0.45μm,13 mm) ;离心管(德国Eppendorf公司,聚丙烯,25 mL) 。1(匈牙利Egis Pharmaceuticals PLC公司,含量99.8%,批号600301217) 、2(印度Laurus Labs Limited公司,含量99.7%,批号AOTV-2/VSP 1/004/18) 、3(印度Solara Active Pharma Sciences Limited公司,含量99.5%,批号PL 40047113) ,以上样品均由WHO委托国外企业生产;2对照品(含量99.8%,批号101096-200901) 和维生素C(含量100%,批号100425-201103) (中国食品药品检定研究院) ;胃肠道模拟脂质体(批号520807) 和ASB缓冲液(acceptor sink conditioned buffer,批号520825) (美国Pion公司) ;无水乙酸钠(美国Sigma公司,含量99.0%,批号BCCB 2261) ;正辛醇、氯化钠、二水合磷酸二氢钠、磷酸钠、磷酸二氢钾、氢氧化钾、氢氧化钠、盐酸、冰乙酸和磷酸均为分析纯,甲醇和乙腈为色谱纯,试验所用溶液均用电阻率为18.2 MΩ·cm的去离子水配制。文章内容由凡默谷小编查阅文献选取,排版与编辑为原创。如转载,请尊重劳动成果,注明【来源:凡默谷公众号】。2方法与结果2.1 HPLC法测定药物的溶解性及方法学验证2.1.1 色谱条件1:色谱柱Waters Symmetry®C 18柱(4.6 mm×250 mm,5μm) ;流动相甲醇∶乙腈∶pH 6.0磷酸盐缓冲液(称取磷酸二氢钾6.8 g,加水980 mL使其溶解,用1 mol/L氢氧化钾溶液调至pH 6.0) (245∶135∶620) ;流速1.2 mL/min;柱温50℃;检测波长207 nm;进样量15μL。2:色谱柱Agilent XBridge C8柱(4.6 mm×250 mm,5μm) ;流动相甲醇∶0.1 mol/L pH 3.0磷酸钠缓冲液(称取磷酸钠16.4 g,加水1 L使其溶解,用磷酸溶液调至pH 3.0) (15∶85) ;流速1.0 mL/min;柱温35℃;检测波长280 nm;进样量20μL。3:色谱柱Agilent XDB C18柱(4.6 mm×250 mm,5μm) ;流动相乙腈∶水(30∶70) ;流速1.0 mL/min;柱温35℃;检测波长260 nm;进样量20μL。2.1.2 溶液配制pH 5.0、pH 6.5及pH 7.4缓冲液:均参照《中华人民共和国药典》2020年版(ChP 2020) 四部通则8004缓冲液项下配制。标准曲线溶液:精密称取1(由于WHO提供的样品量较大,且纯度较高,因此用样品配制标准曲线溶液) 100 mg,置50 mL量瓶中,加入0.1 mol/L盐酸溶液使其溶解并定容,作为1标准曲线贮备液,精密量取1标准曲线贮备液适量,用0.1 mol/L盐酸溶液稀释成每1 mL中含10.2、0.4、0.8、1.0、2.0 mg的1标准曲线溶液。精密称取2对照品1 g,置100 mL量瓶中,加入稀释剂[水∶甲醇∶乙腈(620∶245∶135) ]使其溶解并定容,作为2标准曲线贮备液,精密量取2标准曲线贮备液适量,用上述稀释剂制成每1 mL中含21、2、3、4、5 mg的2标准曲线溶液。精密称取310 mg,置20 mL量瓶中,加入乙腈∶水(30∶70) 使其溶解并定容,作为3标准曲线贮备液,精密量取3标准曲线贮备液适量,用乙腈∶水(30∶70) 制成每1 mL中含35.09、10.18、20.36、40.72、50.90μg的3标准曲线溶液。质控样品溶液:取1,精密称定,加入0.1 mol/L盐酸溶液使其溶解并稀释成质量浓度约为0.8 mg/mL的溶液,平行配制2份,其中1份经0.45μm滤膜过滤,取续滤液及未过滤的溶液作为1质控样品溶液。取2对照品,精密称定,加入稀释剂[水∶甲醇∶乙腈(620∶245∶135) ]使其溶解并稀释成质量浓度约为3.0 mg/mL的溶液,平行配制2份,其中1份经0.45μm滤膜过滤,取续滤液及未过滤的溶液作为2质控样品溶液。取3,精密称定,加入乙腈∶水(30∶70) 使其溶解并稀释成质量浓度约为0.2 mg/mL的溶液,平行配制2份,其中1份经0.45μm滤膜过滤,取续滤液及未过滤的溶液作为3质控样品溶液。2.1.3 系统适用性试验分别取“2.1.2”项下1~3标准曲线溶液,分别按“2.1.1”项下方法进样测定,结果见图2。1~3峰理论塔板数分别为13026、10733、10312,拖尾因子分别为1.15、1.32、1.12;标准曲线溶液(中间浓度点) 连续进样5针的峰面积RSD(n=5) 分别为0.05%、0.11%、0.17%。2.1.4 线性试验分别取“2.1.2”项下的1~3标准曲线溶液,分别按“2.1.1”项下色谱条件进样测定,以质量浓度c为横坐标,峰面积A为纵坐标进行线性回归。结果显示,1~3分别在0.20~2.00 mg/mL、1.001~5.005 mg/mL、5.09~50.9μg/mL内线性关系良好,回归方程分别为A=13842307 c+231497,r=0.9999;A=13609650 c+4951215, r=0.9987;A=10703 c+3554,r=0.9997。2.1.5 精密度试验分别取“2.1.2”项下的1~3标准曲线溶液(中间浓度点) ,分别按“2.1.1”项下色谱条件进样测定,连续进样5针。结果显示1~3峰面积的RSD(n=5) 均小于0.2%,说明方法精密度较高。2.1.6 准确度试验分别取“2.1.2”项下的1~3质控样品溶液,分别按“2.1.1”项下色谱条件进样测定,以标准曲线法计算过膜后的溶液溶度。结果显示,1~3质控样品溶液过膜前后质量浓度的误差均小于1.0%,回收率在99.1%~100.0%。2.1.7 回收率试验分别取“2.1.2”项下的1~3质控样品溶液,分别加入等体积“2.1.2”项下的1~3标准曲线溶液,分别配制成低、中、高3个浓度水平的加标供试品溶液,按“2.1.1”项下色谱条件进样测定并计算回收率。结果显示,1~3的平均回收率(n=3) 分别为99.69%、99.90%、99.46%,RSD分别为0.04%、0.04%、0.05%。2.2 平衡溶解度的测定2.2.1 缓冲液的配制pH 1.2缓冲液:称取氯化钠2.52 g,加入水900 mL使其溶解,用70 g/L的盐酸溶液调至pH 1.2,再用水定容至1000 mL。pH 4.5缓冲液:称取乙酸钠2.99 g,加入水900 mL使其溶解,用120 g/L乙酸溶液调至pH 4.5,再用水定容至1000 mL。pH 6.8缓冲液:称取磷酸二氢钠6.9 g和氢氧化钠0.9 g,加入水800 mL使其溶解,用80 g/L氢氧化钠溶液调至pH 6.8,再用水定容至1000 mL。2.2.2 测定方法及结果平衡溶解度的测定采用摇瓶法,称取1~3样品适量,分别加入“2.2.1”项下的3种pH值的缓冲液适量,形成过饱和溶液(固体样品过量10%~30%) ,并用0.1 mol/L盐酸溶液或0.1 mol/L氢氧化钠溶液调节pH值至初始值附近,每个pH值平行配制3份。置恒温摇床中,转速120 r/min,温度(37±0.5) ℃,分别在2、4、6、8、12、24、48、72 h取样1 mL,用0.45μm滤膜过滤,弃去初滤液,取续滤液适量,用对应pH值缓冲液进行定量稀释,使质量浓度在标准曲线范围内,若超出范围可进行再次稀释,并按“2.1.1”项下色谱条件进样测定。根据不同时间点取样的HPLC测定浓度值,绘制时间浓度曲线,平台浓度点(相邻2个取样点浓度相近) 即为“平衡时间”,该时间点取样的浓度即为“平衡溶解度”。此外,按式①分别计算不同pH值缓冲液的溶解度体积(DSV,mL) ,当所有pH值条件下的DSV均低于250 mL,则判断为高溶解性;若某pH值条件下的DSV高于250 mL,则判断为低溶解性。1~3的DSV结果见图3,综合3个pH值条件下的DSV结果,2为高溶解性;3为低溶解性,而1的溶解性为无法判断(无法判断的原因详见本研究讨论部分“3.1”项下) 。2.3 油水分配系数的测定采用药物溶解性与渗透性评价系统测定油水分配系数,分别称取1~3样品适量,分别用“2.2.1”项下不同pH缓冲液配制成1~3质量浓度各约为0.5 mg/mL的溶液,分别量取上述溶液18 mL,置25 mL水浴池中,分别加入由相应pH缓冲液饱和的正辛醇溶液1 mL,内置转子(150 r/min) ,于37℃水浴锅中24 h,光纤探头置于缓冲液层。1~3的检测波长分别为205~210 nm、275~285 nm、255~265 nm,每分钟采集1次,待溶质分配平衡时分别计算油相(o) 和水相(w) 的质量浓度(co、cw) ,并计算油水分配系数(P,co/cw) 及logP,结果见表1。综合平衡溶解度与油水分配系数的测定结果可知,2的水溶性较强,其表观分配系数受水相组成、缓冲液pH值和油水体积比的影响不大;3则具有较强的脂溶性,在3种不同的pH缓冲液中均得到较高的油水分配系数;在3种pH缓冲液中均无法测定1的油水分配系数,24 h内水相(w) 中1浓度无明显变化。有研究表明,油水分配系数过低,药物不易透过脂质分子膜,油水分配系数过高,药物因强脂溶性难以进入淋巴、血液系统中,无法发挥药效,为了让药物得到充分吸收,使其发挥最佳药效,药物的油水分配系数最好在–2~3内[12—14]。2.4 渗透性的测定采用PAMPA技术测定1~3样品的渗透性,称取1~3样品约4 mg,置药物溶解性与渗透性评价系统的供体室,精密量取“2.2.1”项下不同pH缓冲液和ASB缓冲液各20 mL,分别置供体室和受体室中,两室间以面积为1.65 cm2的仿生膜(经脂质体22μL浸润) 隔离,温度为37℃,搅拌速度为150 r/min,采集时间为8 h,采样间隔60 s,检测波长为220~320 nm,采用光纤探头分别实时监测药物浓度,按照式②计算药物的有效渗透性(Pe,cm/s) 。根据美国FDA发布的《固体口服制剂的体内生物利用度和生物等效性研究》指导原则以及其给出的不同渗透性药物[15],本研究分别选取了高渗透性药物,即美托洛尔普洛萘尔,在同等条件下测定其Pe值以建立模型,通过对比结果来判断2和3的渗透性。式中Pe为有效渗透性(cm/s) ;ct为供体室中药物的初始质量浓度(μg/mL) ;dc/dt为单位时间内受体室中药物浓度的变化速率(μg·mL–1·min–1) ;V为受体室缓冲液的体积(mL) ;A为膜面积(cm 2) 。2和3的渗透性测定结果见表2(1是主动转运机制[16],通过该系统测定其渗透性无实际意义) ,2和3在不同pH缓冲液体系中的Pe值基本均大于模型药物(2在pH 7.4缓冲液体系除外) ,可判断2种药物均为高渗透性药物。3讨论3.1 药物稳定性对溶解度判断结果的影响在整个研究过程中发现,2和3在3个不同pH值缓冲液中较稳定,1在pH 6.8缓冲液中会发生降解,在试验过程中溶液会由无色逐渐变为粉色,最终变为黑色,并伴有黑色沉淀产生。由于整个试验过程中溶液始终保持过饱和状态,因此,通过HPLC测定仍然能够找到溶解平衡点。通过多重光散射仪对溶液的透光率进行分析,发现1在pH 6.8缓冲液中溶液的透光率在16 h内从0降至约25%;在同样的条件下,适当加入维生素C,发现溶液的透光率未发生变化。通过稳定性研究以及查阅相关文献得知[17],1在中性或碱性条件下会发生氧化反应,产生黑色沉淀。从色谱分析数据以及计算结果来看,1在3个pH缓冲液条件下的平均DSV值均小于250 mL,应当判断为高溶解性。然而,此次研究是由国际多个实验室同时进行比对分析,对于1药物,国内、国际3个实验室得出了不同的结论,因此对于该药物的溶解性目前仍未给出结论。3.2 调节pH对溶解度试验的影响测定平衡溶解度时,在药物稳定的基础上,pH值的调节也尤为重要。2和3在3个缓冲液中,pH值均能调至初始pH值附近。1在pH 1.2缓冲液条件下配制溶液时,依据1单次最大剂量为250 mg,试验时首先称取1约300 mg,加入pH 1.2缓冲液10 mL,振摇至全部溶解,再次加入1100 mg,发现少量样品未溶解,测定pH值约为1.8,采用0.1 mol/L盐酸溶液调至pH 1.2,发现所有样品全部溶解,再次加入样品100 mg,再次发生上述现象。因此,本次研究不再继续调节pH值,使供试品溶液始终保持过饱和状态。3.3 样品量及缓冲液体积的确定在整个研究过程中,供试品溶液始终维持在过饱和状态,对于高溶解性药物来说,对样品量的要求较高。例如在本次研究中,WHO提供的3仅为0.640 g,这对试验设计提出了较高的要求。本次研究采用不同pH值的缓冲液5 mL,依据单次最高剂量分别计算每个pH值条件下的所需样品量(见式③) ,从而保证试验结果的准确性。3.4 渗透性测定中波长段的选择以3在pH 6.5缓冲液体系中的渗透性测定为例,供体室中样品浓度从4 h起趋于平衡,故本试验节选4~8 h的渗透数据进行统计计算,选取紫外吸收图谱中下坡段曲线,即290~300 nm波长段进行实时监测。3.5 BCS分类基于上述研究结果可知,2为高溶解性-高渗透性药物,BCS分类应为1类;3为低溶解性-高渗透性药物,BCS分类应为2类。WHO基本药物目录在不断地补充与更新,目前没有公认的方法对药物平衡溶解度进行测定。此外,药物的BCS分类也急需试验数据作为支撑。本研究通过测定3种不同药物的平衡溶解度、油水分配系数以及渗透性,阐述并分析了研究过程中可能出现的问题以及试验结果的影响因素,为WHO基本药物目录的建立提供了数据支持。参考文献详见《中国医药工业杂志》2022年文章信息源于公众号凡默谷,登载该文章目的为更广泛的传递行业信息,不代表赞同其观点或对其真实性负责。文章版权归原作者及原出处所有,文章内容仅供参考。本网拥有对此声明的最终解释权,若无意侵犯版权,请联系小编删除。学如逆水行舟,不进则退;心似平原走马,易放难收。行舟Drug每日更新 欢迎订阅+医药大数据|行业动态|政策解读
更多内容,请访问原始网站
文中所述内容并不反映新药情报库及其所属公司任何意见及观点,如有版权侵扰或错误之处,请及时联系我们,我们会在24小时内配合处理。
靶点
立即开始免费试用!
智慧芽新药情报库是智慧芽专为生命科学人士构建的基于AI的创新药情报平台,助您全方位提升您的研发与决策效率。
立即开始数据试用!
智慧芽新药库数据也通过智慧芽数据服务平台,以API或者数据包形式对外开放,助您更加充分利用智慧芽新药情报信息。