点击蓝字 关注我们例例在望微专辑扫描二维码可查看更多内容刘文静,马锐丨辽宁省肿瘤医院 胸内二科2012年RET基因重排被定义为非小细胞肺癌的驱动因素之一。RET基因重排在肺腺癌的发生率为1%-2% 主要包括RET基因融合(KIF5B exon15-RET exon12融合,CCDC6-RET融合,TRIM33-RET融合,NCOA4-RET融合),RET基因突变等。RET基因融合的非小细胞肺癌临床特点多为不吸烟(或少吸烟)、较年轻(<60岁)的患者。ARROW和LIBRETTO-431研究评估了选择性RET抑制剂普拉塞替尼和塞普替尼在晚期非小细胞肺癌的疗效,两种抑制剂的客观有效率均达60%以上。I/II期临床研究ARROW显示在既往接受治疗的RET融合阳性非小细胞肺癌患者,接受普拉提尼治疗的中位PFS为16.6个月,中位OS达44.3个月。III期研究LIBRETTO-431揭示了赛普替尼一线治疗PFS为 24.8个月,较化疗联合免疫组显著延长13.6个月,进一步明确了靶向治疗作为RET融合阳性的非小细胞肺癌标准治疗的一线推荐,改写了RET融合阳性晚期非小细胞肺癌的治疗指南。PD-L1表达可改变存在基因突变的非小细胞肺癌患者的生存预后。研究发现,EGFR突变阳性的肺腺癌,若其携带PD-L1高表达,接受靶向治疗时获益有限。而对于KRAS突变的非小细胞肺癌患者,若伴有 PD-L1 高表达,免疫治疗带来的获益则更为显著。那么,PD-L1表达对RET基因融合患者的治疗会产生怎样的影响呢?本文报道2例RET基因融合伴PD-L1高表达的晚期肺腺癌一线应用选择性RET抑制剂治疗的病例,旨在探讨PD-L1高表达对RET融合阳性患者治疗的影响。马锐 教授辽宁省肿瘤医院胸内二科主任,肿瘤学博士中国医科大学、大连医科大学硕士研究生导师学术兼职:中国临床肿瘤学会理事会理事,中国老年学学会老年肿瘤专业委员执行委员,中国老年学学会老年肿瘤专业委员肺癌分委会常务委员,中国医药教育协会肺部肿瘤专委会常务委员,辽宁省生命科学学会常务理事,中国抗癌协会肺癌专业委员会委员,辽宁省抗癌协会理事会理事,辽宁省生命科学学会肺癌专业委员会主任委员,辽宁省抗癌协会肿瘤转移专业委员会主任委员,辽宁省抗癌协会肿瘤标志物专业委员会副主任委员,辽宁省医学会内科学分会委员会常务委员,辽宁省生命科学学会老年肿瘤专业委员会常务委员中国肿瘤生物治疗杂志、中国实用内科、医学与哲学,沈阳医学院学报等多家杂志编委及审稿专家。主持省部级、市级课题9项,获辽宁省科技进步三等奖2项、沈阳市科技进步二等奖1项,第一及通讯作者发表论文40余篇。刘文静医学博士,主任医师,中国医科大学硕士研究生导师社会兼职:中国中医药信息学会中西医外科智能诊疗分会常务理事,中国医药教育协会中医药慢病防治工程委员会委员,辽宁省免疫学会肿瘤营养与免疫分会委员,北京医学奖励基金会肺癌医学青年专家委员会委员,辽宁省中西医结合学会盆底康复专业委员会委员,沈阳市劳动能力鉴定委员会专家参与国家自然基金1项,主持省级、市级课题3项,发表I区等SCI及核心期刊论文8篇。获ESMO ASIA 2018青年旅行基金,2017年良医汇“35under35最具潜力青年肿瘤医生”全国100强。病例153岁男性,无吸烟饮酒史,脑血栓病史。2024年7月胸部CT:右肺下叶见一团块状软组织密度影,范围约10.8×9.0cm,边界不清,周围并见斑片状磨玻璃密度影,右肺下叶前底段支气管阻塞。纵隔及右肺门见肿大淋巴结影。考虑右肺下叶支气管肺癌。伴纵隔及右肺门淋巴结转移瘤,右下肺静脉瘤栓。2024.7.23行肺穿刺取病理:(肺)腺癌伴有神经内分泌分化。NGS基因检测:RET KIF5B exon15-RET exon12 融合。PD-L1(克隆号28-8)TPS=90%。临床诊断:右肺下叶恶性肿瘤 cT4N2aM1a IVA期,肺门淋巴结继发恶性肿瘤,纵隔淋巴结继发恶性肿瘤,胸腔积液,大脑中动脉取栓术后。治疗经过:2024.08开始口服赛普替尼(160mg,bid)。2024.09复查胸CT评效PR。2025.1复查胸CT:右肺下叶外基底段见一不规则形实性肿块,大小约94mm×87mm,边缘呈分叶状,其内密度不匀。右侧胸腔见少许水样密度影。评效PD,PFS=5个月。患者未同意再次组织活检,目前应用卡博替尼治疗,仍在随访中。治疗期间未出现毒性反应。2024.082024.09 评效PR2025.01 评效PD病例255岁男性,无吸烟史,有饮酒嗜好。2024年11月常规体检胸CT:左肺上叶占位性病变,大小约2.7×2.4cm,恶性可能大;左肺、左侧叶间胸膜及胸膜下多发微小结节,转移待除外。左侧胸腔积液,部分骨质改变。2024年12月初肺穿刺活检,病理:(肺)腺癌。NGS基因检测: CCDC6-RET(exon1-exon12)融合突变阳性(丰度:13.21%)。PD-L1表达阳性(TPS=35%,CPS=45)。临床诊断:左肺上叶恶性肿瘤cT1cN2bM1a IVA期,肺门继发恶性肿瘤,纵隔继发恶性肿瘤,胸膜继发恶性肿瘤,胸腔积液。治疗经过:2025.01开始口服普拉替尼(400mg,qd)。2025.03复查胸CT:左肺上叶、右肺上叶、左肺斜裂见多发实性结节影,长径范围约3-17mm,较大者大小约17mm×12mm,位于左肺上叶下舌段,可见分叶、毛刺、胸膜凹陷、棘状突起征象。纵隔内小淋巴结。评效PR,随访中。治疗期间未出现毒性反应。2024.122025.03 评效PR病例讨论普拉替尼和塞普替尼均是新一代RET靶点选择性抑制剂,两者均能有效抑制RETV804L/M耐药突变体。相对于卡博替尼、凡德他尼等多靶点抑制剂,普拉替尼和塞普替尼对RET基因融合具有更高的选择性。本文分享的两个病例,均为RET融合突变伴PD-L1高表达的晚期肺腺癌患者一线应用选择性RET-TKIs且均快速起效,其中一例治疗有效持续时间仅5个月,另一例处于随访状态。对于RET融合阳性的NSCLC患者,一线选择RET-TKIs毋庸置疑。但是,同时伴有PD-L1高表达者,治疗又将何去何从?PD-L1是否成为RET-TKIs治疗路上的“绊脚石”?目前发现的选择性RET酪氨酸激酶抑制剂(TKIs)的耐药机制包括RETV804L/M突变体、RET G810R 溶剂前沿突变体、RETG810C/S/R突变,RETG810C突变。此外,PTEN缺失性功能异常、PIK3CA突变、KRAS突变、BRAF突变、MET扩增等也参与了RET-TKIs耐药。然而,PD-L1高表达对RET-TKIs疗效的影响及其机制尚不清楚。回顾既往研究,EGFR敏感突变并伴随PD-L1高表达时,靶向治疗获益有限,且预后可能更差。PD-L1高表达已经成为EGFR敏感突变的非小细胞肺癌靶向治疗耐药的机制之一。机制研究发现,PI3C信号通路突变(PI3CA和PTEN突变)的存在可能导致这组患者对EGFR-TKIs产生原发耐药。此外,PD-L1/BAG-1信号通路可通过上调TGF-Smad通路及YAP1表达,持续激活细胞外调节的ERK通路,诱导EGFR-TKIs耐药。因此,我们推测PD-L1可能通过耐药相关的信号通路影响RET-TKIs敏感性。研究报道,13%-50%RET基因融合的患者可同时存在PD-L1高表达。RET基因融合伴PD-L1高表达的患者,能否获益于免疫治疗?Hegde等收集了70例RET阳性的恶性肿瘤患者,其中非小细胞肺癌29例(41%)。共18例患者经免疫组确认了PD-L1表达状态,15例为非小细胞肺癌。18例患者中,4例(22.2%)PD-L1表达强阳性(≥50%),4例(22.2%)PD-L1中度表达(1% ~ 49%),10例(55.6%)PD-L1无表达(<1%)。15例非小细胞肺癌中,8例(53.3%)PD-L1表达强阳性或中度表达,7例(46.7%)PD-L1无表达。18例患者中,3例PD-L1强阳性患者接受了免疫治疗,2例因疾病进展治疗持续时间不到2个月,另1例因免疫联合化疗的毒性反应,于治疗后0.7个月停止治疗。1例PD-L1中度表达的患者接受了免疫联合化疗,分析时已经治疗了1.4个月,疾病尚无进展。Michael等收集了74例RET基因重排的肺癌患者,26例确认了PD-L1表达状态。6例(23%)PD-L1表达在1% ~ 49%,5例(19%)PD-L1表达为50%或更高。PD-L1表达为50%和30%的患者接受免疫治疗,无进展生存时间仅为1.3个月、2.5个月。同样,高TMB患者(5.27和3.51个突变/Mb)接受免疫治疗后,PFS仅为3.1和1.3个月。从这些小样本研究可以看出,RET基因融合伴PD-L1高表达的患者接受免疫治疗的疗效并不理想。这种免疫治疗的低应答率可能包含以下原因。首先,驱动基因突变的肿瘤中,PD-L1表达并非与PD-L1/PD-L1抑制剂的疗效相关。肿瘤细胞PD-L1高表达可能反映了细胞通过PD-L1途径被激活导致靶向治疗的耐药,而不是免疫反应的标志。其次,单一驱动基因突变的肺癌免疫微环境被视为“cold,non-inflamed”,肿瘤组织内缺少免疫细胞浸润或炎症迹象。也就是说,PD-L1高表达很少伴随高水平CD8+肿瘤浸润淋巴细胞,而后者被认为是PD-L1/PD-L1抑制剂的主要效应产物。结论新一代RET选择性抑制剂是RET基因融合突变的一线优选。RET融合阳性且伴PD-L1高表达的晚期非小细胞肺癌患者,依据指南推荐,我们选择了“有靶打靶”的治疗原则,两例患者均快速起效,但其中一例出现了短期耐药。研究表明,PD-L1“突然入局”似乎并未给RET基因融合阳性的非小细胞肺癌患者带来免疫治疗的惊喜。耐药后的治疗模式该走向何方,是PD-1/PD-L1联合抗血管靶向治疗及化疗的四药模式,还是VEGF/PD-1结合的特异性抗体与化疗的三药联合,或是抗体偶联药物的挑战,期待新的临床数据为患者提供更加有效的治疗策略。对于上述病例的耐药后的基因状态我们也会持续关注,耐药后病理组织的基因检测,更有助于多维度解析耐药机制。参考文献(上下滑动可查看)1.Takahashi, M., J. Ritz, and G.M. Cooper, Activation of a novel human transforming gene, ret, by DNA rearrangement. Cell, 1985. 42(2): p. 581-8.https://doi-org.libproxy1.nus.edu.sg/10.1016/0092-8674(85)90115-12.Lipson, D., M. Capelletti, R. Yelensky, G. Otto, A. Parker, M. Jarosz, J.A. Curran, S. Balasubramanian, T. Bloom, K.W. Brennan, A. Donahue, S.R. Downing, G.M. Frampton, L. Garcia, F. Juhn, K.C. Mitchell, E. White, J. White, Z. Zwirko, T. Peretz, H. Nechushtan, L. Soussan-Gutman, J. Kim, H. Sasaki, H.R. Kim, S.I. Park, D. Ercan, C.E. Sheehan, J.S. Ross, M.T. Cronin, P.A. J?nne, and P.J. Stephens, Identification of new ALK and RET gene fusions from colorectal and lung cancer biopsies. Nat Med, 2012. 18(3): p. 382-4.https://doi-org.libproxy1.nus.edu.sg/10.1038/nm.26733.Hess, L.M., Y. Han, Y.E. Zhu, N.R. Bhandari, and A. Sireci, Characteristics and outcomes of patients with RET-fusion positive non-small lung cancer in real-world practice in the United States. BMC Cancer, 2021. 21(1): p. 28.https://doi-org.libproxy1.nus.edu.sg/10.1186/s12885-020-07714-34.Offin, M., R. Guo, S.L. Wu, J. Sabari, J.D. Land, A. Ni, J. Montecalvo, D.F. Halpenny, L.W. Buie, T. Pak, D. Liu, G.J. Riely, M.D. Hellmann, R. Benayed, M. Arcila, M.G. Kris, C.M. Rudin, B.T. Li, M. Ladanyi, N. Rekhtman, and A. Drilon, Immunophenotype and Response to Immunotherapy of RET-Rearranged Lung Cancers. JCO Precis Oncol, 2019. 3.https://doi-org.libproxy1.nus.edu.sg/10.1200/po.18.003865.Dantoing, E., N. Piton, M. Salaün, L. Thiberville, and F. Guisier, Anti-PD1/PD-L1 Immunotherapy for Non-Small Cell Lung Cancer with Actionable Oncogenic Driver Mutations. Int J Mol Sci, 2021. 22(12).https://doi-org.libproxy1.nus.edu.sg/10.3390/ijms221262886.Gainor, J.F., G. Curigliano, D.W. Kim, D.H. Lee, B. Besse, C.S. Baik, R.C. Doebele, P.A. Cassier, G. Lopes, D.S.W. Tan, E. Garralda, L.G. Paz-Ares, B.C. Cho, S.M. Gadgeel, M. Thomas, S.V. Liu, M.H. Taylor, A.S. Mansfield, V.W. Zhu, C. Clifford, H. Zhang, M. Palmer, J. Green, C.D. Turner, and V. Subbiah, Pralsetinib for RET fusion-positive non-small-cell lung cancer (ARROW): a multi-cohort, open-label, phase 1/2 study. Lancet Oncol, 2021. 22(7): p. 959-969.https://doi-org.libproxy1.nus.edu.sg/10.1016/s1470-2045(21)00247-37.Zhou, C., B. Solomon, H.H. Loong, K. Park, M. Pérol, E. Arriola, S. Novello, B. Han, J. Zhou, A. Ardizzoni, M.P. Mak, F.C. Santini, Y.Y. Elamin, A. Drilon, J. Wolf, N. Payakachat, M.K. Uh, D. Rajakumar, H. Han, T. Puri, V. Soldatenkova, A.B. Lin, B.K. Lin, and K. Goto, First-Line Selpercatinib or Chemotherapy and Pembrolizumab in RET Fusion-Positive NSCLC. N Engl J Med, 2023. 389(20): p. 1839-1850.https://doi-org.libproxy1.nus.edu.sg/10.1056/NEJMoa23094578.Subbiah, V., J.F. Gainor, R. Rahal, J.D. Brubaker, J.L. Kim, M. Maynard, W. Hu, Q. Cao, M.P. Sheets, D. Wilson, K.J. Wilson, L. DiPietro, P. Fleming, M. Palmer, M.I. Hu, L. Wirth, M.S. Brose, S.I. Ou, M. Taylor, E. Garralda, S. Miller, B. Wolf, C. Lengauer, T. Guzi, and E.K. Evans, Precision Targeted Therapy with BLU-667 for RET-Driven Cancers. Cancer Discov, 2018. 8(7): p. 836-849.https://doi-org.libproxy1.nus.edu.sg/10.1158/2159-8290.Cd-18-03389.Subbiah, V., V. Velcheti, B.B. Tuch, K. Ebata, N.L. Busaidy, M.E. Cabanillas, L.J. Wirth, S. Stock, S. Smith, V. Lauriault, S. Corsi-Travali, D. Henry, M. Burkard, R. Hamor, K. Bouhana, S. Winski, R.D. Wallace, D. Hartley, S. Rhodes, M. Reddy, B.J. Brandhuber, S. Andrews, S.M. Rothenberg, and A. Drilon, Selective RET kinase inhibition for patients with RET-altered cancers. Ann Oncol, 2018. 29(8): p. 1869-1876.https://doi-org.libproxy1.nus.edu.sg/10.1093/annonc/mdy13710.Bentzien, F., M. Zuzow, N. Heald, A. Gibson, Y. Shi, L. Goon, P. Yu, S. Engst, W. Zhang, D. Huang, L. Zhao, V. Vysotskaia, F. Chu, R. Bautista, B. Cancilla, P. Lamb, A.H. Joly, and F.M. Yakes, In vitro and in vivo activity of cabozantinib (XL184), an inhibitor of RET, MET, and VEGFR2, in a model of medullary thyroid cancer. Thyroid, 2013. 23(12): p. 1569-77.https://doi-org.libproxy1.nus.edu.sg/10.1089/thy.2013.013711.Andrews SW, A.S., Blake JF, Brandhuber BJ, Cook A, et al, Substituted pyrazol[1,5-A]pyridine compounds as RET kinase inhibitors. 19 April 2018(WO2018/071447 A1 2017).12.Shen T, T.S., Liu X, Mooers BHM, Wu J., Structural insight into sensitivity and resistance of RET mutants to selpercatinib (LOXO-292). Sixth AACR-IASLC International Joint Conference: Lung Cancer Translational Science from the Bench to the Clinic 2020;Abstract:B18, 2020.13.Solomon, B.J., L. Tan, J.J. Lin, S.Q. Wong, S. Hollizeck, K. Ebata, B.B. Tuch, S. Yoda, J.F. Gainor, L.V. Sequist, G.R. Oxnard, O. Gautschi, A. Drilon, V. Subbiah, C. Khoo, E.Y. Zhu, M. Nguyen, D. Henry, K.R. Condroski, G.R. Kolakowski, E. Gomez, J. Ballard, A.T. Metcalf, J.F. Blake, S.J. Dawson, W. Blosser, L.F. Stancato, B.J. Brandhuber, S. Andrews, B.G. Robinson, and S.M. Rothenberg, RET Solvent Front Mutations Mediate Acquired?Resistance to Selective RET Inhibition in?RET-Driven Malignancies. J Thorac Oncol, 2020. 15(4): p. 541-549.https://doi-org.libproxy1.nus.edu.sg/10.1016/j.jtho.2020.01.00614.Chen, Y., Z. Chen, R. Chen, C. Fang, C. Zhang, M. Ji, and X. Yang, Immunotherapy-based combination strategies for treatment of EGFR-TKI-resistant non-small-cell lung cancer. Future Oncol, 2022. 18(14): p. 1757-1775.https://doi-org.libproxy1.nus.edu.sg/10.2217/fon-2021-086215.Lin, P.L., T.C. Wu, D.W. Wu, L. Wang, C.Y. Chen, and H. Lee, An increase in BAG-1 by PD-L1 confers resistance to tyrosine kinase inhibitor in non-small cell lung cancer via persistent activation of ERK signalling. Eur J Cancer, 2017. 85: p. 95-105.https://doi-org.libproxy1.nus.edu.sg/10.1016/j.ejca.2017.07.02516.Zhang, Y., Y. Zeng, T. Liu, W. Du, J. Zhu, Z. Liu, and J.A. Huang, The canonical TGF-β/Smad signalling pathway is involved in PD-L1-induced primary resistance to EGFR-TKIs in EGFR-mutant non-small-cell lung cancer. Respir Res, 2019. 20(1): p. 164.https://doi-org.libproxy1.nus.edu.sg/10.1186/s12931-019-1137-417.Hegde, A., A.Y. Andreev-Drakhlin, J. Roszik, L. Huang, S. Liu, K. Hess, M. Cabanillas, M.I. Hu, N.L. Busaidy, S.I. Sherman, R. Dadu, E.G. Grubbs, S.M. Ali, J. Lee, Y.Y. Elamin, G.R. Simon, G.R. Blumenschein, Jr., V.A. Papadimitrakopoulou, D. Hong, F. Meric-Bernstam, J. Heymach, and V. Subbiah, Responsiveness to immune checkpoint inhibitors versus other systemic therapies in RET-aberrant malignancies. ESMO Open, 2020. 5(5): p. e000799.https://doi-org.libproxy1.nus.edu.sg/10.1136/esmoopen-2020-00079918.Calles, A., J.W. Riess, and J.R. Brahmer, Checkpoint Blockade in Lung Cancer With Driver Mutation: Choose the Road Wisely. Am Soc Clin Oncol Educ Book, 2020. 40: p. 372-384.https://doi-org.libproxy1.nus.edu.sg/10.1200/edbk_28079519.Dudnik, E., E. Bshara, A. Grubstein, L. Fridel, T. Shochat, L.C. Roisman, M. Ilouze, A.B. Rozenblum, S. Geva, A. Zer, O. Rotem, A.M. Allen, and N. Peled, Rare targetable drivers (RTDs) in non-small cell lung cancer (NSCLC): Outcomes with immune check-point inhibitors (ICPi). Lung Cancer, 2018. 124: p. 117-124.https://doi-org.libproxy1.nus.edu.sg/10.1016/j.lungcan.2018.07.04420.Schoenfeld, A.J., H. Rizvi, C. Bandlamudi, J.L. Sauter, W.D. Travis, N. Rekhtman, A.J. Plodkowski, R. Perez-Johnston, P. Sawan, A. Beras, J.V. Egger, M. Ladanyi, K.C. Arbour, C.M. Rudin, G.J. Riely, B.S. Taylor, M.T.A. Donoghue, and M.D. Hellmann, Clinical and molecular correlates of PD-L1 expression in patients with lung adenocarcinomas. Ann Oncol, 2020. 31(5): p. 599-608.https://doi-org.libproxy1.nus.edu.sg/10.1016/j.annonc.2020.01.06521.Negrao, M.V., F. Skoulidis, M. Montesion, K. Schulze, I. Bara, V. Shen, H. Xu, S. Hu, D. Sui, Y.Y. Elamin, X. Le, M.E. Goldberg, K. Murugesan, C.J. Wu, J. Zhang, D.S. Barreto, J.P. Robichaux, A. Reuben, T. Cascone, C.M. Gay, K.G. Mitchell, L. Hong, W. Rinsurongkawong, J.A. Roth, S.G. Swisher, J. Lee, A. Tsao, V. Papadimitrakopoulou, D.L. Gibbons, B.S. Glisson, G. Singal, V.A. Miller, B. Alexander, G. Frampton, L.A. Albacker, D. Shames, J. Zhang, and J.V. Heymach, Oncogene-specific differences in tumor mutational burden, PD-L1 expression, and outcomes from immunotherapy in non-small cell lung cancer. J Immunother Cancer, 2021. 9(8).https://doi-org.libproxy1.nus.edu.sg/10.1136/jitc-2021-002891(来源:《肿瘤瞭望》编辑部)声 明凡署名原创的文章版权属《肿瘤瞭望》所有,欢迎分享、转载。本文仅供医疗卫生专业人士了解最新医药资讯参考使用,不代表本平台观点。该等信息不能以任何方式取代专业的医疗指导,也不应被视为诊疗建议,如果该信息被用于资讯以外的目的,本站及作者不承担相关责任。