Harnessing immunostimulation to reinvigorate antitumor effector immune cells represents a promising strategy for tumor eradication. However, achieving durable clinical outcomes necessitates multidimensional activation to sustain robust immune responses. Here, we present an ultrasound-empowered living biohybrid that strategically mobilizes T-cell-mediated immunity for potent tumor sono-immunotherapy. Through synthetic biology, we engineer bacteria to express a fusion protein encoding the costimulatory OX40 ligand (OX40L), and further functionalize them with a high-performance polymer sonosensitizer tethered via a reactive oxygen species-cleavable linker. Upon ultrasound irradiation, the sono-activated nanocargoes detach from the bacterial surface, facilitating cellular entry and exposing immune-stimulating OX40L. The potent sonodynamic effects, coupled with the native immunogenicity of bacteria, promotes tumor-associated antigen release, fosters a proinflammatory microenvironment, and drives dendritic cell maturation, thereby priming cytotoxic T-cell activation. The OX40L expressed by the engineered bacteria amplifies and sustains T-cell activity, orchestrating a robust and durable antitumor response. This cascade-amplified immune activation effectively suppresses tumor growth, induces long-lasting immune memory, and provides protection against tumor metastasis and recurrence, significantly enhancing survival outcomes. By integrating ultrasound-energized nanoadjuvants with costimulatory immune boosters, this hybrid living biotherapeutic platform offers a versatile and powerful strategy for multidimensional immune activation, advancing the frontier of cancer sono-immunotherapy.