Breast cancer is the most commonly diagnosed malignancy and the fifth leading cause of cancer deaths worldwide. Surgery and radiation therapy are localized therapies for early-stage and metastatic breast cancer. The management of breast cancer is determined in large part by the HER2 (human epidermal growth factor receptor 2), HR (hormone receptor), ER (estrogen receptor), and PR (progesterone receptor) status. Our views of breast cancer are evolving as its molecular hallmarks are examined, which now include immunohistochemical markers (ER, PR, HER2, and proliferation marker protein Ki-67), genomic markers (BRCA1/2 and PIK3CA), and immunomarkers (tumor-infiltrating lymphocytes and PDL1). About two-thirds of malignancies of the breast are HR-positive/HER2-negative; accordingly, endocrine-based therapy is a major treatment option for these patients. Hormonal or endocrine therapy includes selective estrogen receptor modulators (SERMs) such as raloxifene, tamoxifen and toremifene, selective estrogen-receptor degraders (SERDs) including elacestrant and fulvestrant, and aromatase inhibitors such as anastrozole, letrozole, and exemestane. A variety of cytotoxic chemotherapeutic agents are used to treat HR-negative breast cancer patients. These agents include taxanes (docetaxel, nab-paclitaxel, and paclitaxel), anthracyclines (doxorubicin, epirubicin), anti-metabolites (capecitabine, gemcitabine, fluorouracil, methotrexate), alkylating agents (carboplatin, cisplatin, and cyclophosphamide), and drugs that target microtubules (eribulin, ixabepilone, ado-trastuzumab emtansine). Patients with ER-positive tumors are treated with 5-10 years of endocrine therapy and chemotherapy. For patients with metastatic breast cancer, standard first-line and follow-up therapy options include targeted approaches such as CDK4/6 inhibitors, PI3K inhibitors, PARP inhibitors, and anti-PDL1 immunotherapy, depending on the tumor type and molecular profile.