AbstractBispecific antibodies (BsAbs) are monoclonal antibodies that simultaneously bind to a specific antigen on tumors and CD3 on T cells, leading to T cell activation and subsequent tumor cell lysis. Several CD20 × CD3 BsAbs are being developed for B-cell lymphomas. Furthermore, multiple clinical trials to evaluate BsAbs for the treatment of multiple myeloma, with targets including BCMA, GPRC5D and FcRH5, are ongoing. Emerging evidence suggests promising efficacy in heavily pretreated patients with relapsed or refractory lymphoid malignancies, showing an overall response rate of 50–60%, with complete response rates of 30–40% for relapsed or refractory large B-cell lymphoma and 60–70% for relapsed or refractory multiple myeloma. Their toxicity profiles are generally consistent with other T-cell redirecting therapies, including cytokine release syndrome, which may be mitigated with several strategies, such as step-up dosing, pre-mediation with glucocorticoids and a subcutaneous route of administration, and very rare neurotoxicity. Several clinical trials evaluated BsAbs in combination with other agents or in earlier lines of treatment, including in front-line settings. BsAbs have the potential to change the treatment paradigm of lymphoid malignancies in the coming years; however, longer follow-ups are required to assess the durability of responses to these agents. We herein provide an overview of the findings of recent clinical trials on BsAbs, including mechanisms of action, safety profiles, and efficacy, and discuss the role of BsAbs in the treatment of B-cell lymphomas and multiple myeloma.