The external electric field plays an important role in the sensitivity of cocrystal energetic materials. To reveal the influence of external electric field on benzotrifuroxan/2,4,6-trinitroaniline (BTF/TNA), benzotrifuroxan/trinitroazetidine (BTF/TNAZ), benzotrifuroxan/1,3,5-trinitrobenzene (BTF/TNB), and benzotrifuroxan/trinitrotoluene (BTF/TNT) cocrystals' sensitivity, atoms in molecules (AIM), frontier molecular orbitals, nitro group charges (QNO2), electron density values (ρ), electrostatic surface potentials (ESPs), bond dissociation energy (EBDE), and interaction energy (Eint) of the C-NO2 bond were calculated by density functional theory at M062X-D3/ma-def2 TZVPP and B3LYP-D3/6-311 + G (d, p) levels in this article. The results indicate that both negative and positive electric fields reduce the energy gap of the BTF-based cocrystals, and BTF/TNAZ is the most sensitive cocrystal among the four cocrystals. For BTF/TNA and BTF/TNB, the EBDE and the negative charge of the nitro group decreases with increasing positive electric field strength, the Vs max increases with positive electric field strength, and the sensitivity of cocrystal eventually tends to increase under the positive electric field. For BTF/TNAZ and BTF/TNT, the EBDE and the negative charge of the nitro group decrease with increasing negative electric field strength, the Vs max increases with negative electric field strength, and the sensitivity of cocrystal eventually tends to increase under the negative electric field. Finally, the variation in bond length, nitro charge, and AIM electron density values are well correlated with the strengths of the external electric field.