Indoor dust contains a complex mixture of chemicals, including endocrine-disrupting chemicals (EDCs), which may pose risks to children's health. As children spend most of their time indoors and have frequent dust contact, their exposure is heightened. This study quantified the endocrine disrupting potential of dust from children's indoor environments in Sweden, and assessed associations with flame retardants and plasticizers in dust, handwipes, and urine. Fifty dust samples from 18 homes and 11 preschool units were analyzed for estrogen, anti-androgen, and thyroid receptor activities using human osteosarcoma cell-based luciferase reporter assays. Associations were evaluated with 21 legacy and 18 emerging halogenated flame retardants (HFRs) and 11 organophosphate esters (OPEs) in dust and handwipes, as well as nine plasticizers (eight phthalates and di-isononyl cyclohexane 1,2-dicarboxylate (DiNCH)) in dust, and 14 plasticizer metabolites in urine. Samples for biological and chemical analyses were collected from the same designated areas within a limited time frame. Most dust samples exhibited estrogen receptor agonist (ER) and androgen receptor antagonistic (anti-AR) activity, while thyroid receptor (TR) induction was low. Preschool dust showed significantly higher estrogenic activity than home dust. No seasonal variation was observed. Associations were observed between dust hormonal activities and urinary plasticizer metabolites, as well as HFR and OPE concentrations in dust and handwipes. Relative potency (REP) analyses of 36 HFRs and OPEs revealed notable anti-AR activity for 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) (REP values .85 ± .10 (EC25) and .93 ± .07 (EC50)) and 2,2',4,4',6-pentabromo diphenyl ether (BDE-100) (REP values 2.74 ± .29 (EC25) and 3.23 ± .42 (EC50)). Additionally, BDE-100 showed low ER induction.