The induction of immunological tolerance is a promising strategy for managing autoimmune diseases, allergies, and transplant rejection. Tregitopes, a class of peptides, have emerged as potential agents for this purpose. They activate regulatory T cells, which are pivotal in reducing inflammation and promoting tolerance, by binding to MHC II molecules and facilitating their processing and presentation to Treg cells, thereby encouraging their proliferation. Moreover, Tregitopes influence the phenotype of antigen-presenting cells by attenuating the expression of CD80, CD86, and MHC class II while enhancing ILT3, resulting in the inhibition of NF-kappa B signaling pathways. Various techniques, including in vitro and in silico methods, are applied to identify Tregitope candidates. Currently, Tregitopes play a vital role in balancing immune activation and tolerance in clinical applications such as Pompe disease, diabetes-related antigens, and the prevention of spontaneous abortions in autoimmune diseases. Similarly, Tregitopes can induce antigen-specific regulatory T cells. Their anti-inflammatory effects are significant in conditions such as autoimmune encephalomyelitis, inflammatory bowel disease, and Guillain-Barré syndrome. Additionally, Tregitopes have been leveraged to enhance vaccine design and efficacy. Recent advancements in understanding the potential benefits and drawbacks of IVIG and the discovery of the function and mechanism of Tregitopes have introduced Tregitopes as a popular option for immune system modulation. It is expected that they will bring about a significant revolution in the management and treatment of autoimmune and immunological diseases. This article is a comprehensive review of Tregitopes, concluding with the potential of these epitopes as a therapeutic avenue for immunological disorders.