The role of the dynorphin/kappa opioid receptor (KOR) system in dopamine (DA) regulation has been extensively investigated. KOR activation reduces extracellular DA concentrations, but the exact mechanism(s) through which this is accomplished are not fully elucidated. To explore KOR influences on real-time DA fluctuations, we used the photosensor dLight1.2 with fiber photometry in the nucleus accumbens (NAc) core of freely moving male and female C57BL/6J mice. First, we established that the rise and fall of spontaneously arising DA signals were due to DA release and reuptake, respectively. Next, mice were systemically administered the KOR agonist U50,488H in the presence or absence of the KOR antagonist aticaprant. U50,488H reduced both the amplitude and width of spontaneous signals in both sexes. Further, the slope of the correlation between amplitude and width was increased, indicating that DA uptake rates were increased. U50,488H also reduced the frequency of occurrence of signals in males and females. The effects of KOR activation were stronger in males, while effects of KOR antagonism were stronger in females. Overall, KORs exerted significant inhibitory control over spontaneous DA signaling, acting through at least three mechanisms - inhibiting DA release, promoting DA transporter-mediated uptake, and reducing the frequency of signals.