DNA repair processes modulate genotoxicity, mutagenesis, and adaption. Nucleotide excision repair removes bulky DNA damage, and in
Escherichia coli
, basal excision repair, carried out by UvrA, B, C, and D, with DNA PolI and DNA ligase, occurs genome-wide. In transcription-coupled repair (TCR), the Mfd protein targets template strand (TS) lesions that block RNA polymerase for accelerated repair by the basal repair enzymes. Accelerated repair is also seen with particular adducts. Notably, of the two major UV photoproducts, basal repair of (6-4) photoproducts [(6-4)PPs] is about 10× faster than repair of cyclobutane pyrimidine dimers (CPDs). To better understand repair prioritization in
E. coli
, we used XR-seq to measure TCR of UV photoproducts genome-wide. With CPDs, we found that TCR occurred at early time points, increased with transcription level, and was Mfd dependent; later, with completion of TS repair, nontranscribed strand (NTS) repair predominated. With (6-4)PP, when analyzing all genes, TCR was not observed; in fact, among the most highly transcribed genes, slightly more repair of (6-4)PPs in the NTS was evident. Thus, the very rapid basal repair of (6-4)PP in the NTS was faster than TCR of (6-4)PPs in the TS. Overall, TCR is of limited importance in (6-4)PP repair, and TCR of CPDs is limited to the TS of more highly transcribed genes. These results are consistent with the significant role of Mfd in mutagenesis and the modest effect of
mfd
deletion on UV survival and bear upon the response of
E. coli
to bulky DNA damage.