Biomolecular condensates formed via liquid-liquid phase separation are ubiquitous in cells, especially in the nucleus. While condensates containing one or two kinds of biomolecules have been relatively well characterized, those with more heterogeneous biomolecular components and interactions between biomolecules inside are largely unknown. This study used residue-resolution molecular dynamics simulations to investigate heterogeneous protein assemblies that include four master transcription factors in mammalian embryonic stem cells: Oct4, Sox2, Klf4, and Nanog. Molecular dynamics simulations of the mixture systems showed highly heterogeneous and dynamic behaviors; protein condensates mainly contain Sox2, Klf4, and Nanog, while most Oct4 are dissolved into the dilute phase. The condensate forms loosely interacting clusters where Klf4 is the most abundant, suggesting that Klf4 serves as a scaffold of the condensate, and Sox2 and Nanog are bound to Klf4 for stabilizing the condensate. Oct4 is moderately recruited to the condensate, serving as a client mainly via its interaction with Sox2. This study highlights the importance of intermolecular interaction between different transcription factors on the condensate formations with heterogeneous biomolecular components.