Using a range of natural and synthetic prostanoid receptor agonists and antagonists, we have shown that the rat isolated trachea contains a heterogeneous population of prostaglandin receptor sub‐types mediating both relaxation and contraction of the smooth muscle. Prostaglandin E2 (PGE2) elicits smooth muscle relaxation of pre‐contracted preparations, the responses being well defined, with a mean potency (p[A50]) of 7.81 ± 0.05.11‐deoxy PGE1 16,16‐dimethyl PGE2 and misoprostol were all full agonists at this receptor, whilst AH13205 was a low potency agonist, and sulprostone was inactive.The EP1 receptor antagonist, AH6809 (5 μm), and the selective DP receptor antagonist, BW A868C (0.1 μm), had no significant effect on the concentration‐effect (E/[A]) curves to PGE2.The putative EP4‐receptor antagonist, AH23848B, produced non‐competitive antagonism of the PGE2 response curves; pA2 values of 5.07 ± 0.15 and 5.24 ± 0.19 were obtained at concentrations of 30 μm and 100 μm respectively.The synthetic thromboxane A2 mimetic, U46619, caused smooth muscle contractions, with a mean p[A50] of 6.90 ± 0.11. This response was antagonized by the TP receptor antagonist, GR32191B, yielding a mean pA2 of 8.31.At concentrations of 1 μm and above, prostaglandin D2 (PGD2) and the IP‐receptor agonist, cicaprost, generally elicited concentration‐dependent relaxations of the rat trachea. Prostaglandin F2α (PGF2α) was without affinity or efficacy.These data suggest that the rat isolated trachea contains EP‐receptors, TP‐receptors, and few, if any, DP, IP or FP‐receptors. The inactivity of sulprostone (EP3/EP1 receptor selective) and the low potency of AH13205 (EP2‐receptor selective) suggest that the rat trachea contains an atypical EP‐receptor that does not conform to the current classification system.