CONTEXTQing-Xin-Jie-Yu Granule (QXJYG) has shown promise in the treatment of myocardial infarction. However, the mechanism of action of QXJYG underlying its anti-inflammation remain unknown.OBJECTIVEThe study aimed to evaluate the effectiveness and mechanism of QXJYG in a mouse model of myocardial infarction and hypoxia-induced H9C2 cells.MATERIALS AND METHODSMyocardial infarction was induced in mice via left anterior descending coronary artery ligation, and hypoxia-induced H9C2 cells was served as the in vitro model. The cardiac function was evaluated by echocardiography, while myocardial tissue pathology was examined using HE and Masson's trichrome staining. Changes in serum markers of cardiac injury were measured using ELISA kits. The levels of inflammatory cytokines in both the serum and cardiac tissue were quantified using the Bio-Plex Pro Mouse Chemokine assay, and hypoxia-induced inflammatory factors in H9C2 cells were assessed by RT-qPCR. Additionally, western blot analysis was conducted to evaluate the expression of proteins related to the MK2/TTP signaling pathway both in vivo and in vitro experiments.RESULTSQXJYG significantly enhanced cardiac function in mice with myocardial infarction, as evidenced by improved myocardial tissue structure, reduced collagen fiber deposition, and lowered serum levels of creatine kinase isoenzyme MB (CK-MB), cardiac Troponin T (cTnT), and brain Natriuretic Peptide (BNP). QXJYG may reduce the expression of inflammatory factors in both the heart and serum of myocardial infarction-induced mice and attenuate hypoxia-induced levels of inflammatory factors in cardiomyocytes by decreasing the ratio of p-MK2/MK2 and increasing the protein expression of TTP.DISCUSSION AND CONCLUSIONSQXJYG improved cardiac function and reduced injury, fibrosis, and inflammation after myocardial infarction, likely through modulation of the MK2/TTP signaling pathway.