AbstractChelating agents are administered to treat significant intakes of radioactive elements such as plutonium, americium, and curium. These drugs may be used as a medical countermeasure after radiological accidents and terrorist acts. The administration of a chelating agent, such as Ca-DTPA or Zn-DTPA, affects the actinide's normal biokinetics. It enhances the actinide's rate of excretion, posing a dose assessment challenge. Thus, the standard biokinetic models cannot be directly applied to the chelation-affected bioassay data in order to assess the radiation dose. The present study reviews the scientific literature, from the early 1970s until the present, on the different studies that focused on developing new chelation models and/or modeling of bioassay data affected by chelation treatment. Although scientific progress has been achieved, there is currently no consensus chelation model available, even after almost 50 y of research. This review acknowledges the efforts made by different research groups, highlighting the different methodology used in some of these studies. Finally, this study puts into perspective where we were, where we are, and where we are heading in regards to chelation modeling.