OBJECTIVETo investigate the direct and indirect relationships between statin use, low-density lipoprotein cholesterol (LDL-C) levels, and intracerebral hemorrhage (ICH), providing new insights into this complex scientific question.METHODSIn this cohort study, UK Biobank data from 2006 to 2010 were used to construct Structural Equation Models of statin use, LDL-C, and ICH, including 414,253 participants with LDL-C data. Published Genome-Wide Association Studies data were used for drug-target Mendelian Randomization analysis.RESULTSThe study included 414,253 participants, comprising 225,454 women (54.4%) with a mean age of 56.07 (8.11) years. During a median follow-up of 14.01 years, 2973 patients experienced ICH. Structural Equation Modelling showed the indirect effect (path a∗b) of statin on ICH was 0.003 (P < 0.001), the direct effect (path c') was -0.001 (P = 0.568), the total effect (path c) was 0.002 (P = 0.391), and the mediation proportion of LDL-C (a∗b/c) was 150.0%. Mendelian Randomization showed a negative association between LDL-C levels and ICH (β: -0.663, SE: 0.229, P = 0.004), with no causal relationship between statin use and ICH (β: -1.454, SE: 3.133, P = 0.643). Drug-targeted Mendelian Randomization revealed LDL-C levels, predicted by variants in or near HMGCR, PCSK9, CETP, ABCG8/5, and LAP, were negatively associated with ICH risk.CONCLUSIONSThis study confirmed that statins increase the risk of ICH primarily through their LDL-C-lowering effects, rather than the direct effects of the statins themselves. LDL-C is negatively associated with ICH, an association not confined to the effects of the HMGCR loci. This advance provides evidence for the controversy between statin use, LDL-C levels, and ICH risk.