Ammonia acts as a detrimental atmospheric pollutant, posing a sever threat to respiratory tract health and causing lung injury in humans and animals. Circular RNAs (circRNAs) are a distinctive class of non-coding RNA generated by back-splicing of linear RNA, implicated in various biological processes. However, their role in the immune response of chicken lungs to ammonia exposure remains unclear. In this study, we examined the expression profiles of circRNAs in chicken lungs under ammonia stimulation. In total, 61 differentially expressed (DE) circRNAs were identified between the ammonia exposure and control groups, including 17 up-regulated and 44 down-regulated circRNAs. The source genes of these DE circRNAs were predominantly enriched in Influenza A, SNARE interactions in vesicular transport, and Notch signaling pathway. Notably, nine DE circRNAs (circNBAS, circMTIF2, circXPO1, circSNX24, circRAB11A, circARID3B, circUSP54, circPPARA, and circERG) were selected for validation the reliability and authenticity of RNA-seq data. Results showed the back-splicing circular structure, as well as the reliability and accuracy of RNA-seq data in quantifying circRNA expression, as the RT-qPCR results were in agreement with the RNA-seq data. Moreover, we constructed the circRNA-miRNA-mRNA regulatory networks and identified several regulatory networks in chicken lungs under ammonia stimulation, including circRAB11A-gga-miR-191b-3p-BRD2 and circARID3B-gga-miR-1696-CKS2. Taken together, our study delineates the circRNA expression profile and their potential roles in the immune response of chicken lungs to ammonia exposure. These findings offer insights into molecular mechanisms that may mitigate diseases associated with ammonia induced respiratory tract pollution in humans and animals.