The flavonoid hesperidin is a crucial, biologically active substance of great interest because of its polypharmacological properties and high safety profile. However, its widespread use of this bioflavonoid in remedies for the treatment and prevention of various diseases is limited by its low water solubility. This study reports on solid dispersed systems (SDSs) of hesperidin, fabricated for the first time via the method of centrifugal fibre. For one of the compositions of these SDSs, the solubility of the flavonoid in water is observed to be 150-170 times higher than that of the pure compound. Polyvinylpyrrolidones, with different molecular weights, was used as a fibre-forming polymer carrier, alongside sucrose and mannitol as auxiliary substances to enhance the yield of the composites. The SDSs of hesperidin in the form of fibres were characterised via differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FTIR) and powder X-ray diffraction (PXRD). DSC and PXRD results confirmed the amorphisation of hesperidin in the fibrous SDSs. FTIR results confirmed that the interaction of hesperidin with the components of the SDS composites occurs due to the formation of intermolecular hydrogen bonds. Studies of in vitro release kinetics in buffer media with pH = 1.2, 4.5 and 6.8 showed that the release rate of hesperidin from the centrifugally formed SDSs is considerably higher than the dissolution rate of pure hesperidin. Thus, the results of this study confirm that centrifugal fibre formation is a simple and effective method for fabricating highly soluble SDSs of hesperidin.