New findings on the prevention of heart attacks and strokes

2024-03-13
AHA会议
Blockage of arterial blood vessels caused by atherosclerosis is largely responsible for heart attacks and strokes, which are the most common causes of death worldwide. The complex mechanisms that lead to pathological changes in the arteries are not yet fully understood. An international research team has now made important progress in understanding this disease and identified potential new approaches for early detection and therapy. Blockage of arterial blood vessels caused by atherosclerosis is largely responsible for heart attacks and strokes, which are the most common causes of death worldwide. The complex mechanisms that lead to pathological changes in the arteries are not yet fully understood. An international research team led by the Medical University of Vienna and the University Hospital of Würzburg has now made important progress in understanding this disease and identified potential new approaches for early detection and therapy. The results of the study were recently published in the scientific journal Nature Cardiovascular Research. Researchers already know that specialised cells called macrophages are central to the development of atherosclerosis. These cells play a critical role in the formation of so-called plaques, which narrow or block the arteries and can lead to dangerous complications -- above all heart attacks and strokes. However, the exact mechanisms of how macrophages function in this process are not yet fully understood. In the search for the solution to this puzzle, Christoph Binder and Florentina Porsch from MedUni Vienna's Department of Laboratory Medicine, in collaboration with Clément Cochain, Alma Zernecke and Marie Piollet from the University Hospital of Würzburg, took a closer look at the protein TREM2. TREM2 (TREM = Triggering Receptor Expressed on Myeloid Cells) controls the activity of macrophages and therefore has a potential influence on the development of atherosclerosis. The study results indicate that TREM2 plays an important role in the formation of unstable plaques, which are particularly susceptible to rupture and thus increase the risk of heart attacks and strokes. By regulating the survival of so-called foam cells, which are particularly common in atherosclerotic plaques, and by promoting the degradation and removal of damaged or dying cells, TREM2 helps to limit the formation of these dangerous plaques. Important insight into complex mechanisms The evidence obtained in the study that the treatment of mice prone to atherosclerosis with a specific antibody against TREM2 was able to reduce the formation of these unstable plaques is particularly promising. TREM2 thus emerges as a new therapeutic target for stabilising plaques, which could prevent heart attacks and strokes. In addition, the researchers were able to establish a link between a soluble form of this protein ("sTREM2") and the progression of atherosclerosis. TREM2 could therefore not only enable new approaches for the treatment of the disease but also serve as a potential biomarker for early detection. "Our results provide an important insight into the complex mechanisms of atherosclerosis and open up new avenues for the development of effective therapies," the researchers summarise the relevance of their work in the run-up to further studies.
更多内容,请访问原始网站
文中所述内容并不反映新药情报库及其所属公司任何意见及观点,如有版权侵扰或错误之处,请及时联系我们,我们会在24小时内配合处理。
靶点
药物
-
来和芽仔聊天吧
立即开始免费试用!
智慧芽新药情报库是智慧芽专为生命科学人士构建的基于AI的创新药情报平台,助您全方位提升您的研发与决策效率。
立即开始数据试用!
智慧芽新药库数据也通过智慧芽数据服务平台,以API或者数据包形式对外开放,助您更加充分利用智慧芽新药情报信息。