New hybrid catalyst could help decarbonization and make ethylene production more sustainable

2023-01-27
A new hybrid catalyst converts carbon dioxide into ethylene in one pot. A new hybrid catalyst converts carbon dioxide into ethylene in one pot. The catalyst was developed by scientists from Ames National Laboratory, Iowa State University, University of Virginia, and Columbia University. This catalyst supports the world net-zero carbon initiative by using carbon dioxide (CO2) as a feedstock for efficient ethylene production powered by electricity. Ethylene is a commodity chemical used to manufacture a wide range of products from plastics to antifreeze. The large-scale production of ethylene is energy intensive and relies heavily on fossil resources. Electrocatalytic production of ethylene from CO2 is emerging as a promising method. This new catalyst consists of only earth-abundant materials, such as nickel and copper, and requires less energy for chemical reaction. Long Qi, a scientist at Ames Lab, explained how the catalyst works. Atomically dispersed nickel anchored on nitrogen assembly carbon (NAC) works to catalyze CO2 to CO at low voltage and high current. The catalyst is effective over a wide range of voltages and its effectiveness at higher currents means a higher rate of CO production. "Since this catalyst remains active over a very wide voltage range, that allows easy coupling with a second catalyst," Qi said. "So we use the second catalyst, which is a copper nanowire, and by combining these two we have a very selective process that has up to 60% efficiency going from CO2 to ethylene in one pot." Another important aspect of the catalyst is its structure. Wenyu Huang, an Ames Lab scientist and Iowa State University professor from the team, noted that the catalyst's porous structure enhances its effectiveness. "Our catalyst has an ordered mesoporous structure that is beneficiary for mass transfer," he said. "Because it's highly porous, you have a very high surface area to expose a lot of nickel's active sites, making our catalyst very effective in CO2 reduction to CO." For Huang, the most exciting aspect of this research was how the team combined the two catalysts to streamline the process. "We basically combine the two best catalysts on their own, and they work together so we can connect the CO2 to CO and the CO to ethylene reactions in one system," he said. Qi emphasized the importance of using CO2 as a feedstock for this reaction, because it addresses the global need to reduce the amount of CO2 released into the atmosphere. He explained that this process can use CO2 recovered from chemical or industrial processes, or from air capture. "And we can do this without any precious metal, simply the nickel, copper, carbon, and nitrogen, to permit large-scale industrial applications," Qi said. "Also, we potentially eliminate the use of fossil resources to make ethylene."
更多内容,请访问原始网站
文中所述内容并不反映新药情报库及其所属公司任何意见及观点,如有版权侵扰或错误之处,请及时联系我们,我们会在24小时内配合处理。
适应症
-
靶点
-
药物
-
立即开始免费试用!
智慧芽新药情报库是智慧芽专为生命科学人士构建的基于AI的创新药情报平台,助您全方位提升您的研发与决策效率。
立即开始数据试用!
智慧芽新药库数据也通过智慧芽数据服务平台,以API或者数据包形式对外开放,助您更加充分利用智慧芽新药情报信息。