Study shedding new light on Earth's global carbon cycle could help assess liveability of other planets

2024-04-10
Research has uncovered important new insights into the evolution of oxygen, carbon, and other vital elements over the entire history of Earth -- and it could help assess which other planets can develop life, ranging from plants to animals and humans. Research has uncovered important new insights into the evolution of oxygen, carbon, and other vital elements over the entire history of Earth – and it could help assess which other planets can develop life, ranging from plants to animals and humans. The study, published today in Nature Geoscience and led by a researcher at the University of Bristol, reveals for the first time how the build up of carbon-rich rocks has accelerated oxygen production and its release into the atmosphere. Until now the exact nature of how the atmosphere became oxygen-rich has long eluded scientists and generated conflicting explanations. As carbon dioxide is steadily emitted by volcanoes, it ends up entering the ocean and forming rocks like limestone. As global stocks of these rocks build up they can then release their carbon during tectonic processes, including mountain building and metamorphism. Using this knowledge, the scientists built a unique sophisticated computer model to more accurately chart key changes in the carbon, nutrient and oxygen cycles deep into Earth’s history, over 4 billion years of the planet’s lifetime. Lead author and biogeochemist Dr Lewis Alcott, Lecturer in Earth Sciences at the University of Bristol, said: “This breakthrough is important and exciting because it may help us understand how planets, other than Earth, have the potential to support intelligent, oxygen-breathing life. “Previously we didn’t have a clear idea of why oxygen rose from very low concentrations to present-day concentrations, as computer models haven’t previously been able to accurately simulate all the possible feedbacks together. This has puzzled scientists for decades and created different theories.” The discovery indicates that older planets, originating billions of years ago like Earth, may have better prospects to accumulate enough carbon-rich deposits in their crust, which could facilitate rapid recycling of carbon and nutrients for life. The findings showed this gradual carbon enrichment of the crust results in ever-increasing recycling rates of carbon and various minerals, including the nutrients needed for photosynthesis, the process green plants use sunlight to absorb nutrients from carbon dioxide and water. This cycle therefore steadily speeds up oxygen production over the passage of Earth’s history. The research, which started whilst Dr Alcott was a Hutchinson Postdoctoral Fellow at Yale University in the United States, paves the way for future work to further unravel the complex interrelationships between planetary temperature, oxygen, and nutrients. Co-author Prof Benjamin Mills, Professor of Earth System Evolution at the University of Leeds, said: “We have lots of information about distant stars and the size of the planets that orbit them. Soon this could be used to make a prediction of the planet’s potential chemistry, and new advances in telescope technology should let us know if we are correct."
更多内容,请访问原始网站
文中所述内容并不反映新药情报库及其所属公司任何意见及观点,如有版权侵扰或错误之处,请及时联系我们,我们会在24小时内配合处理。
适应症
-
靶点
-
药物
-
立即开始免费试用!
智慧芽新药情报库是智慧芽专为生命科学人士构建的基于AI的创新药情报平台,助您全方位提升您的研发与决策效率。
立即开始数据试用!
智慧芽新药库数据也通过智慧芽数据服务平台,以API或者数据包形式对外开放,助您更加充分利用智慧芽新药情报信息。