A green alternative for treating Streptococcus iniae bacteria in hybrid striped bass

2024-01-30
临床结果疫苗
Scientists have developed a green antibiotic alternative to treat the deadly pathogen Streptococcus iniae in hybrid striped bass, the fourth most farmed finfish in the United States, according to a recent study. Scientists at the United States Department of Agriculture (USDA)'s Agricultural Research Service (ARS) developed a green antibiotic alternative to treat the deadly pathogen Streptococcus iniae in hybrid striped bass, the fourth most farmed finfish in the United States, according to a recent study. S. iniae is the causative agent of streptococcosis, a disease prevalent in aquaculture and causes a worldwide economic loss of $150 million annually. Disease outbreaks can bankrupt fish farms and put farmers at risk of getting the disease when handling infected fish. Current vaccines provide only short-term protection for S. iniae, and fish farmers more often rely on antibiotics to treat the disease. ARS scientists aimed to develop a natural treatment since antimicrobial resistance -- a process when germs like bacteria and fungi develop the ability to fight drugs designed to kill them -- is a major concern for aquaculture farmers when treating bacterial diseases. "Together with collaborators, we developed a novel antimicrobial protein and treatment regimen, that specifically kills only Streptococcus bacteria, and does not leave any chemical residues in the environment," said Michael Deshotel, research microbiologist at the Harry K. Dupree Stuttgart National Aquaculture Research Center in Stuttgart, Arkansas. "According to our study's results, this protein effectively cures S. iniae infectionsinhybrid striped bass." According to Deshotel, the protein, known as ClyX-2, showed a 95 percent survival rate for the fish in the treatment groups in comparison to the 5 percent survival rate of fish in the control groups during the study. The results showed that the protein was statistically as effective at treating S. iniae as antibiotic treatments like carbenicillin (85 percent cure rate). In the future, Deshotel and the researchers plan to study how to treat water to prevent diseases caused by S. iniae before they can infect fish. The recent study, published in Fish & Shellfish Immunology, was conducted in partnership with the USDA-ARS and Daniel Nelson from the University of Maryland's Department of Veterinary Medicine.
更多内容,请访问原始网站
文中所述内容并不反映新药情报库及其所属公司任何意见及观点,如有版权侵扰或错误之处,请及时联系我们,我们会在24小时内配合处理。
靶点
-
立即开始免费试用!
智慧芽新药情报库是智慧芽专为生命科学人士构建的基于AI的创新药情报平台,助您全方位提升您的研发与决策效率。
立即开始数据试用!
智慧芽新药库数据也通过智慧芽数据服务平台,以API或者数据包形式对外开放,助您更加充分利用智慧芽新药情报信息。