Host antimicrobial peptides (AMPs) and extracellular vesicles (EVs) are known to play important roles as part of the immune system, from antimicrobial actions to immune regulation. Recent results also demonstrate that EVs could serve as carriers for AMPs. Related, it was shown that some AMPs can remove the protein corona (PC), the externally adsorbed layer of proteins, from EVs which can be exploited for subtractive proteomics strategies. The interaction of these compounds is thus interesting for multiple reasons from better insight to natural processes to direct applications in EV-based bioengineering. However, we have only limited information on the various ways these species may interact with each other. To reach a broader overview, here we selected twenty-six AMPs, including cell-penetrating peptides (CPPs), and investigated their interactions with red blood cell-derived vesicles (REVs). For this, we employed a complex lipid biophysics including linearly polarized light spectroscopy, flow cytometry, nanoparticle tracking analysis, electron microscopy and also zeta-potential measurements. This enabled the categorization of these peptides into distinct groups. At specific low concentrations, peptides such as LL-37 and lasioglossin-III were effective in PC elimination with minimal disruption of the membrane. In contrast, AMPs like KLA, bradykinin, histatin-5, and most of the tested CPPs (e.g. octa-arginine, penetratin, and buforin II), demonstrate cell-penetrating mechanisms as they could sustain large peptide concentrations with minimal membrane damage. The systematic overview presented here shows the potential mechanism of how AMPs and EVs could interact in vivo, and also how certain peptides may be employed to manipulate EVs for specific applications.