BACKGROUNDFirst-line chemotherapeutic agents lead to remarkable activation treatment in cancers, but the side effects of these drugs also damage healthy cells. In some cases, drug resistance to chemotherapeutic agents is induced in cancer cells. The molecular mechanisms underlying such a side effect have been studied in a range of cancer types, yet little is known about how the adverse effects of chemotherapeutic drugs can be diminished by targeting bromodomain-containing protein 9 (BRD9) in gastric cancers.METHODSWe used two gastric cancer cell lines (MGC-803 and AGS) for comparison. We applied molecular and cellular techniques to measure cell survival and mRNA expression, investigated clinical data in the consensus of The Cancer Genome Atlas, and utilized high-throughput sequencing in MGC-803 cells and AGS cells for global gene expression analysis in inhibiting BRD9 conditions.RESULTSOur studies showed that cancer cells with BRD9 overexpression, MGC-803 cells, were more sensitive to BRD9 inhibitors (i.e., BI9564 or BI7273) than AGS cells. The mechanism of BRD9 was related to the regulation of calcium voltage-gated channel auxiliary subunit alpha2 delta 4 (CANA2D4), calmodulin-like 6 (CALML6), guanine nucleotide binding protein (G protein), alpha activating activity polypeptide O (GNAO1) and Potassium Inwardly Rectifying Channel Subfamily J, Member 5 (KCNJ5) oncogenes in the oxytocin signaling pathway. BRD9 inhibitors could enhance the sensitivity of gastric cancer MGC-803 cells to adriamycin and cisplatin, so we may reduce the dosage of chemotherapeutic agents in curing gastric cancers with BRD9 over expression by combining BI9564 or BI7273 with adriamycin or cisplatin.CONCLUSIONSOur study elucidated the feasibility and effectiveness of inhibiting BRD9 to reduce the adverse effects of first-line chemotherapeutic agents in treating gastric cancer with BRD9 overexpression. This study provides a scientific theoretical basis for a chemotherapy regimen in gastric cancer with BRD9 overexpression.