The purpose of this study is to evaluate in vitro and in vivo gene delivery efficiency of polyamidoamine (PAMAM) starburst dendrimer (generation 2, G2) conjugates with alpha-cyclodextrin (alpha-CDE (G2)) bearing lactose (Lac-alpha-CDE) with various degrees of substitution of the lactose moiety (DSL) as a novel hepatocyte-selective carrier in hepatocytes. Lac-alpha-CDE (DSL 2.6) was found to have much higher gene transfer activity than dendrimer, alpha-CDE, Lac-alpha-CDE (DSL 1.2, 4.6, 6.2 and 10.2) and lactosylated dendrimer (Lac-dendrimer, DSL 2.4) in HepG2 cells, which are dependent on the expression of cell-surface asialoglycoprotein receptor (ASGP-R), reflecting the cellular association of the plasmid DNA (pDNA) complexes. The physicochemical properties of pDNA complex with Lac-alpha-CDE (DSL 2.6) were almost comparable to that with alpha-CDE. Lac-alpha-CDE (DSL 2.6) provided negligible cytotoxicity up to a charge ratio of 150 in HepG2 cells. Lac-alpha-CDE (DSL 2.6) provided gene transfer activity higher than jetPEI-Hepatocyte to hepatocytes with much less changes of blood chemistry values 12h after intravenous administration in mice. These results suggest the potential use of Lac-alpha-CDE (DSL 2.6) as a non-viral vector for gene delivery toward hepatocytes.