BACKGROUNDA brain single-photon emission computed tomography (SPECT) system using cadmium telluride (CdTe) solid-state detectors was previously developed. This CdTe-SPECT system is suitable for simultaneous dual-radionuclide imaging due to its fine energy resolution (6.6 %). However, the problems of down-scatter and low-energy tail due to the spectral characteristics of a pixelated solid-state detector should be addressed. The objective of this work was to develop a system for simultaneous Tc-99m and I-123 brain studies and evaluate its accuracy.METHODSA scatter correction method using five energy windows (FiveEWs) was developed. The windows are Tc-lower, Tc-main, shared sub-window of Tc-upper and I-lower, I-main, and I-upper. This FiveEW method uses pre-measured responses for primary gamma rays from each radionuclide to compensate for the overestimation of scatter by the triple-energy window method that is used. Two phantom experiments and a healthy volunteer experiment were conducted using the CdTe-SPECT system. A cylindrical phantom and a six-compartment phantom with five different mixtures of Tc-99m and I-123 and a cold one were scanned. The quantitative accuracy was evaluated using 18 regions of interest for each phantom. In the volunteer study, five healthy volunteers were injected with Tc-99m human serum albumin diethylene triamine pentaacetic acid (HSA-D) and scanned (single acquisition). They were then injected with I-123 N-isopropyl-4-iodoamphetamine hydrochloride (IMP) and scanned again (dual acquisition). The counts of the Tc-99m images for the single and dual acquisitions were compared.RESULTSIn the cylindrical phantom experiments, the percentage difference (PD) between the single and dual acquisitions was 5.7 ± 4.0 % (mean ± standard deviation). In the six-compartment phantom experiment, the PDs between measured and injected activity for Tc-99m and I-123 were 14.4 ± 11.0 and 2.3 ± 1.8 %, respectively. In the volunteer study, the PD between the single and dual acquisitions was 4.5 ± 3.4 %.CONCLUSIONSThis CdTe-SPECT system using the FiveEW method can provide accurate simultaneous dual-radionuclide imaging. A solid-state detector SPECT system using the FiveEW method will permit quantitative simultaneous Tc-99m and I-123 study to become clinically applicable.