AbstractRheumatoid arthritis (RA) is a chronic inflammatory autoimmune disorder. The present study aimed to evaluate the in silico, in vitro, and in vivo inhibitory effect of visnagin on malate dehydrogenase activity and elucidate its inflammatory efficacy when combined with methotrexate in the RA rat model. The molecular docking, ADMET simulations, MDH activity, expression, and X-ray imaging were detected. Moreover, CRP, RF, (anti-CCP) antibody, (TNF-α), (IL-6), (IL-17), and (IL-10) were evaluated. The expression levels of MMP3 and FOXP3 genes and CD4, CD25, and CD127 protein levels were assessed. Histological assessment of ankle joints was evaluated. The results revealed that visnagin showed reversible competitive inhibition on MDH with inhibitory constant (Ki) equal to 141 mM with theoretical IC50 equal to 1202.7 mM, LD50 equal to 155.39 mg/kg, and LD25 equal to 77.69 mg/kg. In vivo studies indicated that visnagin exhibited anti-inflammatory effects through decreasing MDH1 activity and expression and induced proliferation of anti-inflammatory CD4+CD25+FOXP3 regulatory T cells with increasing the anti-inflammatory cytokine IL-10 levels. Moreover, visnagin reduced the levels of inflammatory cytokines and the immuno-markers. Our findings elucidate that visnagin exhibits an anti-inflammatory impact against RA through its ability to inhibit the MDH1 enzyme, improve methotrexate efficacy, and reduce oxidative stress.
Graphical Abstract