100 项与 CRBN x IRAK4 相关的临床结果
100 项与 CRBN x IRAK4 相关的转化医学
0 项与 CRBN x IRAK4 相关的专利(医药)
• 2001年,曾经Arvinas创始人,耶鲁大学的Craig Crews教授首次提出PROTAC这一概念,引领了小分子创新药的一次全新变革。
• 2023年,Crews教授成立了HALDA Therapeutics,并在ASCO-GU大会上公开他们最新技术平台RIPTAC,同时在bioRxiv上发表了最新文章,描述了RIPTAC概念验证研究结果。
• 2024年,HALDA Therapeutics宣布完成1.26 亿美元 B 轮融资,并重点提及募集资金将用于两种候选药物投入前列腺癌和乳腺癌患者的临床试验。
从PROTAC到RIPTAC,本是由同一位教授提出的创新理论,但其本质上却立足于两个不同的方向,前者强调由“占位驱动”到“事件驱动”,而后者却又由“事件驱动”回到了“占位驱动”,其中缘由为何?
而更关键的是,RIPTAC的诞生有何特殊意义,真的是PROTAC新的变种吗?
从PROTAC到RIPTAC的趋势
理论上,PROTAC与RIPTAC同属于靶向嵌合体(TACs)的一员,且两者均是以双功能小分子为基础。
但结构上,前者是由靶蛋白结合配体+连接子+E3泛素连接酶结合的配体组成;后者则是由靶蛋白结合配体+连接子+维持细胞生存必要的蛋白配体(EP)组成。
Med Chem Res, 2023, 32, 1294
而两者看似差别仅在于后端配体的选择不同,但其实两者的作用机制却大相径庭。
PROTAC的开发理想
首先,PROTAC是通过形成的三元复合物使得E3泛素连接酶能够接近并识别POI,进而催化泛素化反应。E3泛素连接酶催化泛素分子的共价结合到POI的赖氨酸残基上,形成一串多聚泛素链,最终被泛素标记的POI被蛋白酶体识别并降解。
其设计之初,是为了解决传统小分子靶向药物“占用驱动”的两大瓶颈,即:
原有调控机理下,人类细胞中80%的蛋白无法找到可调控的小分子。
过程中需要较高的局部药物浓度才能发挥药物有效性,为后续脱靶风险增加带来风险。
而PROTAC的出现,使得原有小分子药物从传统“占用驱动”转向了”事件驱动”,一方面肿瘤结合位点更广泛,使得更多“不可成药”靶点成为可能,另一方面直接降解驱动蛋白整体,也使得肿瘤突变逃逸变得更加困难。
理论上,PROTAC的阻断作用是明显优于小分子靶向药物的单纯抑制作用,成药性天花板也更高,这也是前几年PROTAC火热的根本原因。
然而,随着PROTAC技术的研究深入,其作为新技术的局限性也陆续暴露,过程中涉及很多业界目前无法解决的基础机理问题,比如:
分子量太大:PROTAC作为双靶点药物,分子量较一般小分子药物较大,普遍在700道尔顿以上,这一定程度上严重影响分子的水溶性及透膜性,导致其不利于采用口服方式给药的方式。
E3连接酶招募有限:E3连接酶虽是一个庞大的蛋白质家族,但目前PROTAC募集的E3连接酶多集中于VHL、CRBN与MDM2等少数个体,E3连接酶及其配体的开发相对滞后,从根本上限制了PROTAC的应用。
靶蛋白降解困难:当三元复合物形成后,能否有效降解,还需要和泛素化酶以及靶蛋白重合成做斗争,直到达成一定程度的平衡。
靶向蛋白数量不佳:PROTAC能靶向并成功降解的蛋白并没有预想的那么多。
除此之外还有很多如血浆暴露量,进入细胞效率,毒性,血脑屏障等诸多药代动力学问题都需要考量与筛选。
因此,基于PROTAC技术开发的理想虽然丰满,但其也并非我们想象中那么完美。
RIPTAC的横空出世
与PROTAC有所不同,RIPTAC虽然其结构上同为三元复合物,但其却不是通过诱导肿瘤靶蛋白的降解来实现肿瘤杀伤,而是使表达靶蛋白的肿瘤细胞因基础关键功能丧失而死亡。
某种意义上,RIPTAC更像是小分子版本的ADC,而事实上确实也有人将RIPTAC与SMDC(小分子药物偶联物)、DDC(药物-药物偶联物)联系在一起。
对比SMDC与RIPTAC的结构组成,前者一端是以小分子药物作为靶向抗体,另一端的有效载荷则是细胞毒性分子;而后者一端是靶向肿瘤高表达的靶蛋白,另一端则是决定肿瘤生死存亡的EP蛋白配体。某种程度看,RIPTAC也可以做到“精确制导”的相同的事,与ADC、PDC、SMDC,甚至是TCE双抗都有着异曲同工之妙。
优势方面,对比传统小分子药物,RIPTAC由于靶向机制的存在,正常细胞中不存在肿瘤内的特异性靶蛋白,因此不会形成相应的复合体,从而降低了药物毒性;而对比偶联药物,RIPTAC双功能小分子特性也导致其可选靶标更广泛(组织与器官靶向性不足),理论上的适应症范围更广。
总体上,RIPTAC更像是偶联药物与小分子药物的结合体,既有小分子药物在制造与递送上的优势,也有偶联药物精确制导,豁免健康细胞的优势。更重要的是,RIPTAC摆脱了对癌症驱动蛋白的依赖,为产生耐药性的患者创造新的癌症药物。
当然,RIPTAC技术在解决了一系列困难的同时,随之而来也有更多全新的局限性出现,为行业发展带来了新的挑战,比如:
① 分子量大:与PROTAC相同,RIPTAC作为一种小分子抑制剂,RIPTAC分子量较大,理化性质发生了改变,导致其开发难度加大的同时,口服给药的难度依旧存在。
② 使用率下降:从机制上,RIPTAC放弃了PROTAC引以为傲的“事件驱动”技术亮点,转而回到了传统药企的“占位驱动”,这导致其无法如之前一般反复使用,而只能一个RIPTAC对应一个靶点蛋白。
③ 作为新技术,未来是否有足够的TP和EP可供开发仍是未知。
RIPTAC产业阶段的刚刚开始
从HALDA的成立到RIPTAC的作用机制曝光,再到系列药物的信息披露,RIPTAC诞生的时间并不长,距离完整产业化还尚需很长时间,较之ADC、单/双抗等创新疗法,更像是刚刚出生的婴儿。
据统计,由于RIPTAC的新药概念是2023年才提出,所以全球领域RIPTAC新药布局并不多,目前已知的布局企业仅有HALDA一家。
图片来源:Halda Therapeutics
而其首席RIPTAC治疗药物HLD-0915,能同时结合雄激素受体(AR)和一种参与转录调控的重要细胞蛋白,之后产生的三聚体复合物导致必需蛋白功能的丧失和前列腺癌细胞的选择性死亡,在2023年的临床前数据中,HLD-0915在体外对前列腺癌细胞具有选择性杀伤作用,在体内对前列腺癌啮齿动物模型具有抗肿瘤活性。
①可选择性诱导ARhi前列腺癌细胞凋亡。
②在Enzalutamide耐药模型中具有临床前活性。
③通过预先给予AR LBD抑制剂的方式,验证AR依赖的EP抑制(预先给予Enzalutamide与RIPTAC竞争AR结合,从而阻断三聚体复合物形成和EP抑制)。
④RIPTAC下调参与同源重组修复的基因,诱导BRCAness,将探索与PARP抑制剂的联合治疗。
最新消息显示,HLD-0915预计将于2025年上半年启动一项1期临床试验,用于治疗转移性、去势抵抗性癌症(mCRPC)患者。同时,2024年8月HALDA完成新一轮融资,资金也将用于支持其第二款RIPTAC治疗转移性癌症的临床开发,并进一步建立团队。
可以预料,随着未来更多HLD-0915等新药的临床阶段进展,RIPTAC技术成药性也将得到进一步验证,或许2025年就会有更多Biotech企业与投资企业入局,甚至还有望见到MNC促成的BD交易。
国内RIPTAC机会不小
目前来看,就国内对RIPTAC药物的态度相对谨慎,纵然百济神州等头部Biotech企业已然注意到了该技术疗法,但由于该技术仍处于技术验证阶段,入局风险过大,因此无论是企业、投资机构,甚至高校(尚无任何一篇国内文献涉及)对该领域的动作也仅限于讨论,反而是在此之前的PROTAC与分子胶领域更受青睐。
以PROTAC为例,国内Biotech企业的相关管线数量庞大,部分创新疗法甚至已步入全球领先的水平,比如海创药业、开拓药业、百济神州、睿跃生物、珅诺生物等,并且国内大药企也在持续关注,比如海思科、开拓药业、海创药业、诺诚健华、恒瑞医药等。
表. 国内Biotech企业(部分)
药品名称
药品分类
靶点
在研适应症(总)
原研单位
全球最高阶段
HP-518
PROTAC
AR
晚期前列腺癌;三阴性乳腺癌
海创药业
临床Ⅱ期
GT-20029
PROTAC
AR
雄激素性脱发;脱发;寻常痤疮;痤疮
开拓药业
临床Ⅱ期
BGB-16673
PROTAC
BTK
慢性淋巴细胞白血病;淋巴浆细胞淋巴瘤;
百济神州(苏州)
临床Ⅱ期
CG001419
PROTAC
Trk
晚期实体瘤
睿跃生物
临床Ⅱ期
RNK05047
PROTAC
BRD4
晚期实体瘤 ; 弥漫性大B细胞淋巴瘤
珅诺生物
临床Ⅱ期
AC0682
PROTAC
ESR1
乳腺癌
冰洲石生物
临床I期
LNK-01002
PROTAC
Ras
急性髓系白血病 ;真性红细胞增多症后骨髓纤维化 ;骨髓纤维化 ;
凌科药业
临床I期
HDM-2006
PROTAC
MAP4K1
实体瘤
中美华东
临床Ⅰ期
QLH-12016
PROTAC
-
晚期前列腺癌
齐鲁制药
临床Ⅰ期
HSK-29116
PROTAC
BTK
B细胞淋巴瘤
海思科
临床Ⅰ期
DG-01
PROTAC
SRD5A3;GSPT1
前列腺癌;肝癌;实体瘤
德亘生物
临床Ⅰ期
BGB-45035
PROTAC
IRAK4
中重度特应性皮炎
百济神州
临床Ⅰ期
HJ-002-03
PROTAC
EGFR
晚期非小细胞肺癌
和径医药
临床Ⅰ期
HJ-002-03
PROTAC
EGFR
晚期非小细胞肺癌
和径医药
临床Ⅰ期
LT-002
PROTAC
IRAK4
特应性皮炎
领泰生物
临床Ⅰ期
HRS-1358
PROTAC
靶点
-
恒瑞医药
临床Ⅰ期
数据来源:药智数据
在这一点上,考虑到PROTAC与RIPTAC同根同源的属性,未来RIPTAC最可能的情况就是与PROTAC协同发展,这就意味着上述PROTAC企业在未来很可能将成为RIPTAC最大的潜力股,实现由PROTAC到RIPTAC的无缝连接。
小结
从小分子药物到PROTAC,再从PROTAC到RIPTAC,是生物医药产业的需求持续变化的最终体现。
PROTAC的出现,让不可成药靶点成为可能,也让小分子药物在如今大分子药物盛行的年代中有了重新崛起的希望。而RIPTAC在PROTAC的基础上却引入了全新的机制,使摆脱对癌症驱动蛋白的依赖成为可能,为产生耐药性的患者创造新的癌症药物。
但是,就目前的RIPTAC技术而言,其发展还处于一个非常早期的阶段,其研究也主要集中于基础作用机制都探索阶段。但随着目前精准治疗趋势越来越被认可,由小分子靶向药向RIPTAC等开创性的药物发现策略的转变也成为了新的可能。
而更关键的是,对于如今挣扎于“内卷”的大多数Biotech而言,RIPTAC作为一系列疾病的潜在可行疗法的发展是一个令人兴奋的前景,现在的空白市场,未来也可能在资本、研究者与企业的共同努力下,爆发出不低于双抗、ADC等领域的市场潜力,中国企业或可把握良机。
来源 | 博药(药智网获取授权转载)
撰稿 | 头孢
责任编辑 | 八角
声明:本文系药智网转载内容,图片、文字版权归原作者所有,转载目的在于传递更多信息,并不代表本平台观点。如涉及作品内容、版权和其它问题,请在本平台留言,我们将在第一时间删除。
合作、投稿 | 马老师 18323856316(同微信)
阅读原文,是受欢迎的文章哦
导语
靶向蛋白降解技术,特别是蛋白水解靶向嵌合体(PROTAC),作为一种新兴的抗癌策略,近年来发展迅速。本文发表于《Annual Review of Cancer Biology》,由Dundee大学靶向蛋白降解中心的Vesna Vetma、Suzanne O'Connor和Alessio Ciulli撰写,综述了PROTAC药物的研发进展及其在癌症治疗中的应用前景。文章详细介绍了目前已进入临床试验的30余种PROTAC药物,涵盖雄激素受体、雌激素受体、布鲁顿酪氨酸激酶等多个重要靶点,并深入探讨了PROTACs的设计思路、作用机制、临床前及临床研究数据,以及面临的挑战和未来发展方向。该文为深入了解PROTACs在抗癌领域的应用提供了全面而及时的参考。
当然由于综述时效性,因此个人也在此基础上做一些相应的增补。
一、背景介绍
尽管近年来癌症治疗取得了显著进展,但药物毒性、疗效不足和耐药性仍然是临床治疗的主要挑战。传统的药物研发主要集中于开发小分子抑制剂,这些抑制剂通过结合蛋白质的活性位点来阻断其功能。然而,许多致癌蛋白缺乏合适的结合位点,或者抑制剂无法完全阻断蛋白质的功能,导致治疗效果不佳。靶向蛋白降解技术,特别是PROTAC技术,为克服这些挑战提供了一种新的策略。
二、PROTAC作用机制
PROTAC 是双功能小分子,由三部分组成:E3 连接酶配体、连接体和靶蛋白 (POI) 配体。PROTAC 通过将 POI 与 E3 连接酶连接起来,形成三元复合物,从而促进泛素分子转移到 POI 上。泛素化的 POI 会被蛋白酶体识别并降解。由于 PROTAC 的催化作用机制,它可以在亚化学计量浓度下发挥作用,并且可以降解高丰度蛋白,从而在低剂量下达到显著的靶蛋白降解。
三、临床试验中的PROTAC
目前,超过30种PROTAC药物已进入临床试验,主要集中在癌症治疗领域,少数探索其他疾病的治疗。以下将对处于临床试验阶段、靶向不同癌症相关蛋白的PROTAC进行更详细的介绍,并对已公布的部分临床试验结果进行总结。
1. AR
作用机制: AR-PROTACs通过招募E3连接酶(例如CRBN)使AR泛素化,从而促进蛋白酶体降解AR,阻断AR信号通路,抑制前列腺癌细胞增殖。
代表药物:
ARV-110 (Bavdegalutamide): 首个进入临床的PROTAC药物,靶向AR,用于治疗mCRPC。临床试验结果显示,ARV-110在携带AR T878X/H875Y突变的患者亚组中疗效最佳,凸显了患者分层的重要性。然而,在更广泛的mCRPC患者群体中,其疗效有限,可能与AR信号通路复杂的耐药机制有关。
ARV-766 (Luxdegalutamide): 第二代AR-PROTAC,具有更高的稳定性和更广的基因型覆盖范围,可降解野生型和突变型AR。早期临床数据显示,ARV-766在较低剂量下即可有效降低前列腺特异性抗原水平,展现出优于恩杂鲁胺的潜力。目前ARV-766正在进行激素治疗后mCRPC患者的临床试验,并计划开展一线治疗的临床试验。
CC-94676 (BMS-986365):一种异双功能口服疗法,旨在通过 AR 降解和拮抗的一流双重机制来抑制 AR 活性,ESMO2024上展现的mCRPC一期临床数据出色,计划2025启动3期注册性临床【ESMO2024--BMS-986365数据出色,BMS计划2025启动3期注册性临床】。
其他AR-PROTAC: 包括HP518、AC-176和HRS-5041等,均处于早期临床试验阶段,靶向mCRPC。这些PROTAC大多基于CRBN或其他未公开的E3连接酶。其临床疗效和安全性数据还有待进一步公布。
未来展望: 开发更有效的AR-PROTACs,拓展适应症至激素敏感性前列腺癌,探索与其他疗法的联合应用。
2. ER
作用机制:ER-PROTACs通过介导ER降解,抑制ER信号通路,从而发挥抗肿瘤作用。
代表药物:
ARV-471 (Vepdegestrant): 口服、高效的ER-PROTAC,用于治疗ER阳性/HER2阴性的局部晚期或转移性乳腺癌。临床前研究显示,ARV-471在多种乳腺癌细胞系中均能有效降解ER,并表现出优于氟维司群的肿瘤抑制活性。ARV-471已进入3期临床试验,并获得了FDA快速通道资格认定,有望成为治疗乳腺癌的新型有效疗法。
其他ER-PROTAC: 包括AC682 和HRS-1358等,处于早期临床试验阶段,主要用于治疗ER阳性的乳腺癌。
未来展望: 进一步评估ARV-471在不同乳腺癌亚型中的疗效和安全性,探索与其他疗法的联合应用,例如CDK4/6抑制剂或PI3K抑制剂。
3. BTK
作用机制:BTK-PROTACs通过诱导BTK降解,抑制BCR信号通路,从而治疗B细胞恶性肿瘤。
代表药物:
NX-2127 (Zelebrudomide): 双重BTK和Ikaros降解剂,兼具分子胶和PROTAC的特性。它可以降解野生型和C481S突变型BTK,以及IKZF1和IKZF3。临床试验显示,NX-2127在CLL患者中取得了良好的疗效,与BTK突变状态无关。然而,由于生产工艺改进的需求,该药物的1期临床试验目前处于暂停状态。
NX-5948: 第二代BTK-PROTAC,具有更高的选择性和中枢神经系统渗透性。临床前研究显示,NX-5948比抑制剂和第一代降解剂更有效地抑制肿瘤生长。目前NX-5948正处于1期临床试验中,用于治疗B细胞恶性肿瘤,包括中枢神经系统肿瘤和原发性中枢神经系统淋巴瘤。
其他BTK-PROTAC: 包括BGB-16673、HSK-29116、ABBV-101、HZ-Q1070、UBX-303等,均处于早期临床试验阶段,主要用于治疗B细胞恶性肿瘤。
未来展望:进一步评估NX-5948的疗效和安全性,特别是其中枢神经系统活性;开发针对不同BTK突变的PROTACs,克服耐药性。
4. Bcl-xL
作用机制:DT-2216通过选择性降解Bcl-xL,诱导肿瘤细胞凋亡,而不会显著影响血小板存活,从而降低血小板减少症的风险。
代表药物:
DT-2216: 1期临床试验正在进行中,用于治疗复发/难治性TCL和其他血液系统恶性肿瘤。初步数据显示,DT-2216在不引起严重血小板减少的情况下具有抗肿瘤活性。
未来展望:评估DT-2216的长期疗效和安全性,探索与其他疗法的联合应用。
5. BCL6
作用机制:BCL6-PROTACs通过降解BCL6,抑制其转录调控功能,从而抑制DLBCL细胞增殖。
代表药物:
ARV-393, BMS-986458: 这两种BCL6-PROTACs均处于1期临床试验阶段,主要用于治疗DLBCL。
未来展望:评估ARV-393和BMS-986458的疗效和安全性,探索与其他疗法的联合应用,例如利妥昔单抗。
6. IRAK4
作用机制:IRAK4 是 TLR 和 IL-1R 信号通路的关键激酶,在多种炎症和癌症中发挥作用。IRAK4-PROTACs 通过降解 IRAK4 蛋白,阻断下游信号传导,从而发挥抗炎和抗肿瘤作用。
代表药物:
KT-413: 由 Kymera Therapeutics 开发,是一种 CRBN E3 连接酶为基础的 IRAK4 降解剂。临床前研究显示,KT-413 能有效降解 IRAK4,并在多种疾病模型中显示出疗效。曾开展针对非霍奇金淋巴瘤、惰性淋巴瘤、B 细胞非霍奇金淋巴瘤、滤泡性淋巴瘤、弥漫性大 B 细胞淋巴瘤和原发性皮肤大 B 细胞淋巴瘤的 I 期临床试验。尽管达到了预期的降解水平且没有剂量限制性毒性,但由于战略原因,该项目已终止开发。
未来展望:尽管 KT-413 的开发终止,但 IRAK4 仍然是一个有吸引力的靶点。未来研究可能集中在寻找新的 IRAK4 降解剂,优化其理化性质和药代动力学特性,并探索新的联合治疗策略。
7. BRD9
作用机制:BRD9 是非经典 SWI/SNF 染色质重塑复合物的一个组成部分,在滑膜肉瘤和 SMARCB1 缺陷型肿瘤中发挥关键作用。BRD9-PROTACs 通过降解 BRD9 蛋白,破坏癌细胞的转录调控,从而抑制肿瘤生长。
代表药物:
FHD-609: 由 Foghorn Therapeutics 开发,是一种 CRBN E3 连接酶为基础的 BRD9 降解剂。I 期临床试验显示 FHD-609 可有效降解 BRD9,但在较高剂量下出现 QTc 间期延长,导致试验暂停。
CFT-8634: 由 C4 Therapeutics 开发,是一款口服 BRD9 降解剂。I 期临床试验显示,尽管 BRD9 降解水平很高,但在滑膜肉瘤和 SMARCB1 缺陷型实体瘤患者中疗效不足,导致试验终止。
未来展望:尽管面临挑战,BRD9 仍然是一个有潜力的靶点。未来的研究可能需要关注滑膜肉瘤的关键驱动因素 SSX-SS19 融合蛋白。此外,也需要进一步优化 BRD9-PROTACs 的理化性质和药代动力学特性,并探索新的联合治疗策略。
8. STAT3
作用机制:STAT3 是一种参与肿瘤发生、发展和转移的转录因子。STAT3-PROTACs 通过降解 STAT3 蛋白,阻断其下游信号通路,从而抑制肿瘤生长。
代表药物:
KT-333: 由 Kymera Therapeutics 开发,是一款 VHL E3 连接酶为基础的 STAT3 降解剂。I 期临床试验显示 KT-333 能够有效降解 STAT3,并在特定患者群体中观察到临床意义的缓解。该药物已获得治疗皮肤 T 细胞淋巴瘤和外周 T 细胞淋巴瘤的孤儿药资格认定,以及 FDA 快速通道资格认定。
未来展望:KT-333 的临床试验结果令人鼓舞,有望成为治疗 STAT3 驱动型癌症的新型疗法。未来需要进一步评估其长期疗效和安全性,并探索新的联合治疗策略。
9. MDM2
作用机制:MDM2 是 p53 肿瘤抑制蛋白的负调节因子。MDM2-PROTACs 通过降解 MDM2 蛋白,稳定 p53 蛋白水平,从而激活 p53 介导的细胞周期阻滞和凋亡,抑制肿瘤生长。
代表药物:
KT-253: 由 Kymera Therapeutics 开发。临床前研究表明,KT-253 可以克服 MDM2 的负反馈回路,并在体内外均显示出抗肿瘤活性。I 期临床试验正在进行中,用于治疗多种血液系统恶性肿瘤和实体瘤。初步数据显示,在耐受剂量下,KT-253 具有良好的疗效,且未观察到中性粒细胞减少症或血小板减少症等血液学毒性。
未来展望:KT-253 的早期临床数据令人鼓舞,有望成为治疗 p53 失活型癌症的新型疗法。未来需要进一步评估其长期疗效和安全性,并探索新的联合治疗策略。
10. EGFR
作用机制:EGFR 是一种参与细胞生长、增殖和分化的受体酪氨酸激酶。EGFR-PROTACs 通过降解 EGFR 蛋白,阻断 EGFR 信号通路,从而抑制肿瘤生长。
代表药物:
HSK-40118: 由 Haisco Pharmaceutical Group 开发,靶向 EGFR L858R 突变体。I 期临床试验正在进行中,用于治疗 EGFR 突变的晚期或转移性 NSCLC。
CFT-8919: 由 C4 Therapeutics 和 Betta Pharmaceuticals 合作开发,是一款变构的、口服生物可利用的 EGFR L858R 突变体选择性降解剂。临床前研究显示,CFT-8919 能够降解 EGFR L858R 及其继发突变体,并在对第三代 EGFR 抑制剂耐药的小鼠模型中显示出抗肿瘤活性,包括 EGFR L858R T790M 脑转移模型。
HJ-002-03(和径医药)、BG-60366(百济神州):EGFR C797S PROTAC,处于临床一期。
未来展望:EGFR-PROTACs 为治疗 EGFR 突变型 NSCLC 提供了新的治疗选择,特别是对于那些对现有抑制剂产生耐药性的患者。未来需要进一步评估 HSK-40118 和 CFT-8919 的临床疗效和安全性,并探索新的联合治疗策略。
11. SMARCA2
作用机制:SMARCA2 和 SMARCA4 是 SWI/SNF 染色质重塑复合物的 ATP 依赖性解旋酶。SMARCA4 功能缺失突变在多种恶性肿瘤中富集。SMARCA2-PROTACs 通过选择性降解 SMARCA2,利用 SMARCA2 和 SMARCA4 之间的合成致死关系,从而杀死肿瘤细胞。
代表药物:
PRT3789: 由 Prelude Therapeutics 开发,是一款 VHL E3 连接酶为基础的 SMARCA2 降解剂。目前正在 I 期临床试验中,作为单一疗法和与多西紫杉醇联合使用,用于治疗 SMARCA4 突变的 NSCLC。但一期初步临床结果不佳【SMARCA2降解剂:靶向增强子重编程,治疗SMARCA4突变型肺癌的新策略】。
PRT7732:Prelude Therapeutics 开发,是一款口服SMARCA2 降解剂,可能是基于CRBN。目前正在 I 期临床试验中。
未来展望:SMARCA2-PROTACs 为治疗 SMARCA4 突变型癌症提供了一种新的治疗策略。未来需要进一步评估 PRT3789 的临床疗效和安全性,并探索新的联合治疗策略。
12. KRAS
作用机制:KRAS 是一种在多种癌症中 häufig 突变的癌基因。KRAS-PROTACs 通过降解 KRAS 蛋白,阻断 KRAS 信号通路,从而抑制肿瘤生长。
代表药物:
ASP3082: 由 Astellas Pharma 开发,是一款靶向 KRAS G12D 突变体的 VHL E3 连接酶为基础的降解剂,目前处于 I 期临床试验阶段,但初步临床结果不佳【ESMO2024--安斯泰来的KRASG12D PROTAC令人失望】。FDA 已授予 ASP3082 快速通道资格认定,用于治疗胰腺导管腺癌。
ASP4396:Astellas Pharma另一个靶向 KRAS G12D 突变体的PROTAC,目前处于 I 期临床试验阶段,可能是基于CRBN。
未来展望:KRAS 长期以来被认为是“不可成药”的靶点,KRAS-PROTACs 的出现为 KRAS 突变型癌症的治疗带来了新的希望。未来需要进一步评估 ASP3082 和其他 KRAS 降解剂的临床疗效和安全性,并探索新的联合治疗策略。
13. BRAF
作用机制:BRAF 是一种丝氨酸/苏氨酸激酶,是 RAS-RAF-MEK-ERK 信号通路的重要组成部分。BRAF V600E 突变在多种癌症中常见。BRAF-PROTACs 通过降解突变型 BRAF 蛋白,阻断下游信号通路,从而抑制肿瘤生长。
代表药物:
CFT1946: 由 C4 Therapeutics 开发,是一款靶向 BRAF V600E 突变体的 CRBN E3 连接酶为基础的降解剂。目前正在 I/II 期临床试验中,用于治疗 BRAF V600 突变驱动的癌症,包括对抑制剂耐药的癌症。该试验将评估 CFT1946 单药治疗和与 MEK 抑制剂曲美替尼联用的疗效。
未来展望:BRAF-PROTACs 为治疗 BRAF 突变型癌症,特别是对 BRAF 抑制剂耐药的癌症,提供了新的治疗选择。未来需要进一步评估 CFT1946 的临床疗效和安全性,并探索新的联合治疗策略。
四、PROTAC 的优势和挑战
PROTAC的优势
完全消除蛋白功能: 传统的抑制剂通常只阻断蛋白质的特定功能或相互作用,而PROTACs则通过降解目标蛋白,从根本上消除其所有功能,包括催化功能、支架功能以及蛋白-蛋白相互作用等。这对于那些具有多种功能或难以通过抑制单个活性位点来有效控制的蛋白靶点尤为重要,例如转录因子、支架蛋白和致癌融合蛋白等。
靶向“不可成药”靶点: 许多疾病相关蛋白缺乏明确的结合口袋或活性位点,传统的小分子抑制剂难以靶向。而PROTACs不需要与蛋白的活性位点结合,可以靶向蛋白表面任何可及的位点,从而拓展了可成药靶点的范围,为开发靶向“不可成药”靶点的药物提供了新的途径。
催化作用机制: PROTACs以催化方式发挥作用,即一个PROTAC分子可以介导多个目标蛋白的降解,因此在亚化学计量浓度下即可有效发挥作用。这使得PROTACs药物在较低剂量下即可达到治疗效果, potentially 降低脱靶效应和毒副作用,并提高药物的治疗窗口。
更高的选择性: 即使使用对同源蛋白没有选择性的配体,PROTACs也可能实现选择性降解。这是因为PROTACs的作用依赖于三元复合物的形成,而不同蛋白与E3连接酶形成三元复合物的稳定性和空间构象可能存在差异,从而导致选择性降解。此外,可以通过合理设计PROTACs的结构,例如连接体的长度和组成,来进一步提高其选择性。
克服耐药性: 肿瘤细胞常常通过靶点蛋白突变的方式产生对抑制剂的耐药性。而PROTACs的降解机制使其对某些类型的突变不敏感,例如那些不影响PROTAC结合但影响抑制剂结合的突变。此外,PROTACs还可以降解那些导致耐药性的突变蛋白,从而克服耐药性。
作用持久: PROTAC介导的蛋白降解作用通常比抑制剂的抑制作用更持久。这是因为蛋白降解后需要一定时间才能重新合成,而抑制剂的抑制作用则会随着药物的清除而减弱。PROTACs的持久作用可以延长给药间隔,提高患者的依从性。
PROTACs面临的挑战
成药性挑战: PROTACs通常具有较高的分子量、较多的氢键供体和受体、较高的亲脂性和较多的可旋转键,这些特性使其难以满足Lipinski五规则等传统药物的理化性质要求,导致较差的细胞渗透性、溶解度和口服生物利用度,给药物的开发和临床应用带来挑战。
脱靶效应: PROTACs可能结合并降解非目标蛋白,导致脱靶效应和毒副作用。这需要在药物设计和开发过程中进行严格的筛选和优化,以提高PROTACs的特异性。
耐药性机制: 尽管PROTACs可以克服某些类型的耐药性,但肿瘤细胞也可能通过其他机制对PROTACs产生耐药性,例如E3连接酶的突变或表达下调、泛素-蛋白酶体系统的功能障碍等。需要进一步研究PROTACs的耐药机制,并开发相应的应对策略。
药物递送: 由于PROTACs的分子量较大,其在体内的递送和分布可能受到限制,特别是到达实体瘤内部。需要开发新的药物递送系统,以提高PROTACs在肿瘤组织中的浓度和疗效。
免疫原性: PROTACs作为一种新型的药物分子,其免疫原性尚不清楚。需要进行深入的研究,以评估PROTACs的免疫原性风险,并开发相应的解决方案。
生产成本: PROTACs的合成和纯化相对复杂,导致其生产成本较高。需要开发更有效、更经济的PROTACs合成方法,以降低药物的生产成本,提高其可及性。
尽管PROTACs技术面临一些挑战,但其巨大的潜力吸引了学术界和工业界的广泛关注。随着研究的不断深入和技术的进步,相信这些挑战将逐步得到解决,PROTACs技术将在未来为治疗癌症和其他疾病带来新的突破。
五、未来展望
PROTAC技术作为一种新兴的靶向蛋白降解策略,展现出巨大的潜力,但仍处于发展早期。为了充分发挥其治疗潜力,未来的研究需要关注以下几个方面:
1. 扩展E3连接酶库及优化配体:
目前,大多数PROTACs依赖于CRBN和VHL这两种E3连接酶。为了克服对这两种E3连接酶的耐药性,以及实现组织特异性降解,需要开发靶向其他E3连接酶的PROTACs,例如MDM2、cIAP1、KEAP1、RNF114等。这需要发现和鉴定新的E3连接酶配体,并深入研究其与靶蛋白相互作用的机制。
优化现有E3连接酶配体,提高其结合亲和力和选择性,降低脱靶效应。开发具有更好成药性的配体,例如口服生物利用度更高、组织分布更广的配体。
2. 优化连接体和靶蛋白配体:
连接体的长度、组成和柔性会影响PROTACs的成药性和降解效率。需要开发新的连接体设计策略,例如可裂解连接体、可控释放连接体等,以提高PROTACs的靶向性和疗效。
优化靶蛋白配体,提高其结合亲和力和选择性。开发共价结合的靶蛋白配体,提高PROTACs的降解效率和作用持久性。探索靶向蛋白-蛋白相互作用界面的配体,以更有效地干扰蛋白功能。
3. 提高PROTACs的成药性:
PROTACs通常分子量较大,理化性质较差,导致其成药性较差。需要开发新的PROTACs设计策略,例如片段化的PROTACs、双PROTACs、杂合PROTACs等,以减小分子量,提高成药性。
利用计算辅助药物设计和人工智能技术,优化PROTACs的结构,提高其细胞渗透性、溶解度和口服生物利用度。
开发新的药物递送系统,例如纳米颗粒、抗体偶联药物等,以提高PROTACs在体内的递送效率和靶向性。
4. 深入研究PROTACs的作用机制和耐药机制:
深入研究PROTACs形成三元复合物的结构和动力学,揭示其降解靶蛋白的分子机制。
研究肿瘤细胞对PROTACs的耐药机制,例如E3连接酶的突变或表达下调、泛素-蛋白酶体系统的功能障碍等,并开发相应的应对策略,例如联合用药、开发新的PROTACs等。
5. 拓展PROTACs的应用领域:
PROTACs技术不仅可以用于治疗癌症,还可以用于治疗其他疾病,例如神经退行性疾病、感染性疾病、自身免疫性疾病等。
探索PROTACs在疾病诊断和生物标志物开发中的应用。
6. 开发新型靶向蛋白降解技术:
除了PROTACs技术外,还可以开发其他靶向蛋白降解技术,例如分子胶、自噬靶向嵌合体(AUTAC)、溶酶体靶向嵌合体(LYTAC)等,以拓展靶向蛋白降解的范围和应用。
7. 加强产学研合作:
加强学术界和工业界的合作,推动PROTACs技术的临床转化和应用。
建立PROTACs技术平台,共享资源和技术,加速PROTACs药物的研发进程。
总而言之,PROTAC技术具有广阔的应用前景,但仍面临诸多挑战。通过持续的创新和研究,不断优化PROTACs的设计和开发,克服其面临的挑战,PROTACs技术有望在未来为治疗多种疾病带来新的突破,造福人类健康。
六、结论
PROTAC 技术在癌症治疗领域展现出巨大的潜力。随着研究的不断深入,PROTAC 有望成为治疗癌症和其他疾病的新型有效疗法。然而,要充分发挥 PROTAC 的潜力,仍需要克服一些挑战,例如优化其理化性质、探索新的 E3 连接酶、开发组织特异性 PROTAC 以及研究其耐药性机制。相信随着技术的不断进步,PROTAC 将在未来为癌症患者带来更多希望。
END
免责声明:本文仅作知识交流与分享及科普目的,不涉及商业宣传,不作为相关医疗指导或用药建议。文章如有侵权请联系删除。
OTC2024类器官前沿应用与3D细胞培养论坛圆满落幕,点击图片可查看会后报告,咨询OTC2025类器官论坛请联系:王晨 180 1628 8769
▎药明康德内容团队报道
靶向蛋白降解(TPD)技术的进展是药物发现领域的关键性转变,尤其是通过分子胶和蛋白降解靶向嵌合体(Proteolysis-Targeting Chimera,以下简称PROTAC),大大扩展了可成药的靶点,为治疗开辟了前所未有的可能性。当下,靶向蛋白降解领域正在蓬勃发展,新兴的技术和药物类型不断涌现。
在中国,该领域今年以来也进展颇多,多款创新产品陆续进入临床阶段。根据NMPA药品审评中心(CDE)官网,今年以来(截至11月18日),至少有11款靶向蛋白降解疗法1类新药首次在中国获批IND,来自百济神州、华东医药、格博生物、睿跃生物、安斯泰来、百时美施贵宝等公司。这些产品拟开发的疾病领域涵盖实体肿瘤、血液肿瘤、自身免疫性疾病。本文将根据公开资料梳理这些产品的公开信息。
格博生物:GLB-001胶囊
作用机制:CK1α分子胶蛋白降解剂 适应症:髓系恶性肿瘤
2024年2月,格博生物申报的GLB-001获批临床,拟开发用于髓系恶性肿瘤。GLB-001为格博生物自主研发的一款高选择性的酪蛋白激酶1α(CK1α)口服分子胶蛋白降解剂。GLB-001可通过与CRL4CRBN E3泛素连接酶复合物中的底物蛋白受体CRBN相结合,靶向降解CK1α,并触发p53的稳定与蓄积及其下游信号传导通路的激活,导致肿瘤细胞周期停滞和凋亡,发挥抑制肿瘤生长的作用。
根据格博生物公开资料,该公司专注于靶向蛋白降解新药研发,成立至今已获得了高瓴创投、启明创投、礼来亚洲基金、凯泰资本和君联资本等多家知名投资机构近9000万美元融资。除了GLB-001胶囊,该公司研发的IKZF1/3选择性分子胶蛋白降解剂GLB-002此前也已经进入临床研究阶段。
康朴生物:KPG-818胶囊
作用机制:分子胶免疫调节药物
适应症:系统性红斑狼疮
2024年3月,康朴生物研发的小分子1类新药KPG-818胶囊在中国获批临床,拟开发治疗系统性红斑狼疮(SLE)。KPG-818是康朴生物医药设计开发的新一代口服分子胶免疫调节药物,归属E3泛素连接酶复合物CRL4-CRBN调节剂,对靶点CRBN显示出极高的亲和力,可以高效降解与B淋巴细胞发育和增殖密切相关的锌指转录因子Aiolos(IKZF3)和Ikaros(IKZF1),有效调节TNF-α、IL-6、IL-2、IL-10等细胞因子的表达水平。值得一提的是,今年6月,KPG-818用于治疗系统性红斑狼疮的2a期临床研究结果已经发布。
康朴生物是一家处于临床阶段的创新型生物医药公司,致力于开发小分子靶向免疫调节创新药物。该公司的研发管线中包含了CRL4-CRBN分子胶蛋白质降解剂产品,正在开发用于治疗系统性红斑狼疮、炎症性肠病、白塞氏病、多发性骨髓瘤等;还包括了多款处于临床前阶段的分子胶-抗体双重靶向药物。
和径医药:HJ-002-03片
作用机制:EGFR PROTAC
适应症:EGFR突变的晚期非小细胞肺癌
今年4月和6月,和径医药研发的HJ-002-03片该产品相继在中国和美国获批临床,拟开发治疗EGFR突变的晚期非小细胞肺癌。HJ-002-03片是新一代口服、高选择性、广谱EGFR PROTAC,拟开发治疗EGFR突变晚期非小细胞肺癌。该产品旨在解决EGFR小分子抑制剂的耐药问题。和径医药聚焦肿瘤和中枢神经系统等疾病领域的药物开发,该公司研发管线涵盖PROTAC、抗体及小分子等。
安斯泰来:ASP3082注射液
作用机制:KRAS G12D PROTAC
适应症:KRAS G12D突变实体瘤
2024年6月,安斯泰来(Astellas)申报的ASP3082注射液在中国获批临床,拟开发用于携带KRAS G12D突变的既往经治局部晚期(不可切除)或转移性恶性实体瘤。公开资料显示,这是一款新型的小分子PROTAC,它结合并选择性靶向KRAS G12D突变蛋白,通过募集E3泛素连接酶蛋白进行降解。该产品正在国际范围内开展1期临床研究。
根据安斯泰来官网介绍,该公司已经建立了一系列靶向蛋白降解剂研发管线,旨在创造下一代蛋白质降解物,用于治疗癌症和其它多个适应症。ASP3082正是该系列管线中的一款先导产品,其余还包括另一款KRAS G12D降解剂ASP4396以及一款尚处于临床前阶段的泛KRAS降解剂等。
百时美施贵宝:golcadomide胶囊
作用机制:CELMoD分子胶化合物
适应症:大B细胞淋巴瘤
2024年6月,百时美施贵宝旗下新基(Celgene)公司1类新药golcadomide胶囊获批临床,拟开发用于未经治的高危大B细胞淋巴瘤。这是一款新型E3泛素连接酶Cereblon(CELMoD)分子,针对疾病特点做了优化,使其主要分布在淋巴器官。在针对B细胞淋巴瘤的1/2期临床研究中,该产品的客观缓解率(ORR)达到91.1%。
百时美施贵宝公司的蛋白稳态(Protein Homeostasis)技术平台使用多种不同的方法来达到降解靶标蛋白的效果,其中包括被称为CELMoD的分子胶类化合物。它们通过与E3泛素连接酶Cereblon结合,改变其底物特异性,让它能够标记与癌症相关的蛋白,促使它们降解。
超阳药业:HP-001胶囊
作用机制:IKZF1/3分子胶降解剂
适应症:血液系统恶性肿瘤
2024年7月,超阳药业1类新药HP-001胶囊获批临床,拟开发治疗血液系统恶性肿瘤。根据超阳药业新闻稿,HP-001胶囊是该公司首个1类创新药,为一款IKZF1/3分子胶降解剂。该产品属于新型CRBN E3连接酶调节剂,通过与CRBN结合,特异性招募转录因子IKZF1/3并启动对其蛋白的泛素化降解,激活多种抗肿瘤下游反应。超阳药业成立于2021年,该公司聚焦抗肿瘤适应症,已经搭建了包含多款分子胶和蛋白降解靶向嵌合体的研发管线。
德亘生物:DG01片
作用机制:双靶点 PROTAC
适应症:前列腺癌和肝癌等实体瘤
2024年8月,德亘生物申报的DG01片获批临床,拟开发治疗晚期或转移性去势抵抗性前列腺癌和肝癌等实体瘤。公开资料显示,DG01片为一款双靶点PROTAC药物。它可同时降解GSPT1和SRD5A3靶蛋白,双降解的作用机制诱导雄激素受体(AR)和AR-V7的下调,从而抑制前列腺癌细胞的增殖,达到治疗前列腺癌的效果。
百济神州:BGB-45035片
作用机制:靶向IRAK4的CDAC蛋白降解剂
适应症:特应性皮炎
2024年8月,百济神州1类新药BGB-45035片获批临床,拟用于治疗中重度特应性皮炎。BGB-45035片是一款靶向IRAK4的蛋白降解剂,是百济神州在自有CDAC平台上研发的第二款靶向降解剂。该产品有潜力诱导更深、更快的IRAK4降解,并比其他同类药物具有更强的细胞因子抑制作用。IRAK4是Toll样受体(TLRs)和IL-1受体介导的炎症发生中的关键性蛋白。
百济神州已经有多款CDAC产品进入临床研究阶段,除了BGB-45035片,还包括:包括BGB-16673(BTK CDAC),预计将于2025年上半年启动针对R/R CLL的3期临床试验;BG-60366(EGFR CDAC),近日已经向NMPA申报IND,有望在2024年第四季度进入临床开发阶段。
睿跃生物:注射用CG009301
作用机制:GSPT1靶向蛋白降解剂
适应症:血液恶性肿瘤
2024年10月,睿跃生物1类新药注射用CG009301获批临床,拟开发治疗复发/难治性血液恶性肿瘤(包括但不限于AML、ALL、高危型MDS等)。根据睿跃生物新闻稿介绍,CG009301是高选择性GSPT1靶向蛋白降解剂。GSPT1是一种在许多癌症中高度表达的蛋白质,包括血液学和实体瘤。
睿跃生物(Cullgen)正在应用其专有的uSMITE™(ubiquitin-mediated, small molecule -induced target elimination)平台,通过小分子诱导、泛素化介导的方式将目标靶蛋白降解,使得传统基于功能位点抑制方式“不可成药”的蛋白可被靶向降解。该公司目前拥有三个降解剂项目正在或即将启动1期临床试验,还在推进其他几个靶向蛋白降解剂和降解剂-抗体偶联物(DACs)的研发。今年11月,睿跃生物宣布拟与Pulmatrix公司合并,旨在创建一家纳斯达克上市的公司。
海创药业:HP568片
作用机制:ERα PROTAC
适应症:ER+/HER2-乳腺癌
2024年10月,海创药业研发的1类新药HP568片获批临床,拟开展用于治疗ER阳性和HER2阴性的晚期乳腺癌的临床试验。HP568是一款靶向降解ERα的PROTAC药物,由靶蛋白配体、E3连接酶配体和两配体间的连接子3部分构成。研究表明该产品对ERα野生型蛋白和临床常见的ERα突变蛋白均具有极强的降解活性。
海创药业专注于癌症和代谢性疾病领域新药研发,该公司拥有PROTAC靶向蛋白降解技术平台,目前其另一款口服AR PROTAC在研药物HP518已经进入临床研究阶段。
华东医药:HDM2006片
作用机制:HPK1 PROTAC
适应症:晚期实体瘤
2024年10月,华东医药1类新药HDM2006片获批临床,拟开发治疗晚期实体瘤。根据华东医药公告介绍,这是其首个自主研发的小分子抗肿瘤药物,为一款靶向造血祖激酶1(HPK1)的PROTAC药物。HPK1位于PD-1的上游通路,是免疫细胞表达的关键激酶,有可能成为免疫治疗的下一个潜力靶点。相较于HPK1小分子抑制剂,蛋白降解剂有望大幅提升药效和安全性。
根据今年10月《自然》子刊Nature Reviews Drug Discovery近期发布的综述文章介绍,靶向蛋白降解剂的发现与设计仍面临诸多挑战,尤其在识别和验证适合降解的靶点方面。同时,识别新的E3连接酶也需要大量的发现与验证工作。尽管存在诸多挑战,但随着产业和学术界在科学与技术上的不断突破与创新,靶向蛋白降解技术有望在未来带来更多新药获批,造福广大患者。
参考资料:
[1]中国国家药监局药品审评中心(CDE)官网. Retrieved Nov 18,2024, From https://www.cde.org.cn/main/xxgk/listpage/4b5255eb0a84820cef4ca3e8b6bbe20c
[2]各公司官网及公开资料
本文来自药明康德内容团队,欢迎个人转发至朋友圈,谢绝媒体或机构未经授权以任何形式转载至其他平台。转载授权或其他合作需求,请联系wuxi_media@wuxiapptec.com。
免责声明:药明康德内容团队专注介绍全球生物医药健康研究进展。本文仅作信息交流之目的,文中观点不代表药明康德立场,亦不代表药明康德支持或反对文中观点。本文也不是治疗方案推荐。如需获得治疗方案指导,请前往正规医院就诊。