Avian influenza viruses (AIVs) have caused a large number of epidemics in domestic and wild birds, and even posed a health challenge to humans. Highly pathogenic AIVs have attracted the most public attention. However, low pathogenic AIVs, including H4, H6, and H10 subtype AIVs, have spread covertly in domestic poultry, without obvious clinical signs. The emergence of human infections with H6 and H10 AIVs and the evidence of seropositivity of H4 AIV in poultry-exposed individuals indicated that these AIVs sporadically infect humans and could cause a potential pandemic. Therefore, a rapid and sensitive diagnostic method to simultaneously detect Eurasian lineage H4, H6, and H10 subtype AIVs is urgently required. Four singleplex real-time RT-PCR (RRT-PCR) assays were established based on carefully designed primers and probes of the conserved regions of the matrix, H4, H6, and H10 genes and combined into a multiplex RRT-PCR method to simultaneously detect H4, H6, and H10 AIVs in one reaction. The detection limit of the multiplex RRT-PCR method was 1-10 copies per reaction when detecting standard plasmids, and showed no cross-reaction against other subtype AIVs and other common avian viruses. Additionally, this method was suitable to detect the AIVs in samples from different sources, the results of which showed high consistency with virus isolation and a commercial influenza detection kit. In summary, this rapid, convenient, and practical multiplex RRT-PCR method could be applied in laboratory testing and clinical screening to detect AIVs.