New blood marker can identify Parkinsonian diseases

2023-09-18
Is it possible that a single biomarker can detect all types of diseases related to dopamine deficiency in the brain? Yes, that's what a research group is discovering. 'We have observed that an enzyme in cerebrospinal fluid and in blood is a useful marker for identifying all types of Parkinson's-related diseases with high accuracy,' says the study leader. Is it possible that a single biomarker can detect all types of diseases related to dopamine deficiency in the brain? Yes, that's what a research group in Lund is discovering. "We have observed that an enzyme in cerebrospinal fluid and in blood is a useful marker for identifying all types of Parkinson's-related diseases with high accuracy," says Oskar Hansson, who led the study. Researchers at Lund University are publishing their findings in the journal Nature Aging. The marker in question is called DOPA decarboxylase (DCC). In the current study, DCC was found to be elevated in individuals with Parkinson's disease as well as in people with other diseases that result in dopamine deficiency in the brain. However, the marker was normal in other brain diseases such as Alzheimer's disease. The researchers even noticed that DCC was elevated in individuals with Parkinson's many years before they developed any symptoms. "We have used advanced techniques that allow us to measure thousands of proteins simultaneously in a small amount of sample. We conducted this in 428 individuals to identify biomarkers that can indicate whether a patient with motor disturbances or cognitive difficulties has damage to the dopamine system in the brain. We found that if a patient has a disorder in the dopamine system, the levels of the biomarker DDC increase, regardless of where they are in the course of the disease. An important discovery is that this biomarker can be measured in blood, where it is significantly increased, especially in Parkinson's disease," says Oskar Hansson, a professor of neurology at Lund University and a consultant at Skåne University Hospital. The researchers' findings were verified in an additional group of 152 individuals. Furthermore, they demonstrated that the new biomarker is also significantly increased in blood by analyzing blood plasma samples from 174 individuals. Damage to the dopamine system in the brain can also be detected through PET camera examinations. However, this is a very costly and complicated method that is only available at specialized memory clinics. "Since the symptoms of various neurodegenerative brain diseases resemble each other, there is a significant risk of misdiagnosis and thus improper treatment. Therefore, it is crucial to find safer diagnostic tools and methods, and we are focusing on that in our research. Moreover, I believe that in the future, different brain diseases will be treated even before the symptoms become apparent, and blood markers will be essential in identifying the right individuals in a simple and cost-effective manner."
更多内容,请访问原始网站
文中所述内容并不反映新药情报库及其所属公司任何意见及观点,如有版权侵扰或错误之处,请及时联系我们,我们会在24小时内配合处理。
靶点
药物
-
来和芽仔聊天吧
立即开始免费试用!
智慧芽新药情报库是智慧芽专为生命科学人士构建的基于AI的创新药情报平台,助您全方位提升您的研发与决策效率。
立即开始数据试用!
智慧芽新药库数据也通过智慧芽数据服务平台,以API或者数据包形式对外开放,助您更加充分利用智慧芽新药情报信息。