The ultraviolet (UV)/chlorine process has been widely applied for water treatment. However, the transformation of microplastic-leached dissolved organic matter (MP-DOM) in advanced treatment of real wastewater remains unclear. Here, we investigated alterations in the photoproperties of MP-DOM leached from biodegradable and conventional microplastics (MPs) and their subsequent effects on the degradation of sulfamethazine (SMT) by the UV/chlorine process. Spectroscopy was used to assess photophysical properties, focusing on changes in light absorption capacity, functional groups, and fluorescence components, while photochemical properties were determined by calculating the apparent quantum yields of reactive intermediates (ΦRIs). For photophysical properties, our findings revealed that the degree of molecular structure modification, functional group changes, and fluorescence characteristics during UV/chlorine treatment are closely linked to the type of MPs. For photochemical properties, the ΦRIs increased with higher chlorine dosages due to the formation of new functionalities. Both singlet oxygen (1O2) and hydroxyl radicals (•OH) formation were strongly correlated with excited triplet state of DOM (3DOM*) in the UV/chlorine treatment. Additionally, we found that the four types of MP-DOM inhibit the degradation of SMT and elucidated the mechanisms behind this inhibition. We also proposed degradation pathways for SMT and assessed the ecotoxicity of the resulting intermediates. This study provides important insights into how the characteristics and transformation of MP-DOM affect contaminant degradation, which is critical for evaluating the practical application of UV-based advanced oxidation processes (UV-AOPs).