Advanced glycation end products (AGEs) are the product of non-enzymatic glycation of serum proteins. AGEs increase reactive oxygen species (ROS) formation, which leads to diabetic complications. Phytochemicals exhibit lesser side effects as compared to conventional therapy. In this study, three isomers of coumaric acid (ortho, meta, para) were used to deduce the better one in terms of reducing diabetic complications. For this purpose, human serum albumin (HSA) was incubated with glucose in the absence and presence of isomers for 28 days. To avoid any growth, NaN3 was added and temperature was kept constant throughout the incubation period. Studies like fluorescence, circular dichroism spectroscopy, fructosamine analysis, free lysine estimation, free thiol group estimation were done. To investigate the ROS production, fluorescence microscopy of isolated lymphocytes using DAPI and dichloro-dihydro-fluorescein diacetate were performed. Molecular docking and molecular dynamic simulations (root-mean-square deviation, root-mean-square fluctuations, radius of gyration and solvent-accessible surface area) of HSA and peroxisome proliferator activated receptor (PPAR) alpha and gamma were also done. It was observed that in glycated protein samples, the level of absorbance, fluorescence, fructosamine and carbonyl group increased along with the loss of secondary structure, free lysine and thiol group. These parameters were found gradually recovered in treated samples. ROS production and apoptosis were found to be reduced in lymphocytes treated with p-Coumaric acid (pCA)-treated protein samples as compared to lymphocyte treated with glycated protein. Computational modelling suggested a stable complex formation of HSA and PPARs with pCA. Results with pCA at 200 µM were consistently better than other two isomers. Our next step is to evaluate this study in rats.Communicated by Ramaswamy H. Sarma.