We utilized positron emission tomography (PET) imaging in vivo to map the spatiotemporal biodistribution/expression of class-IIa histone deacetylases (class-IIa HDACs) in the central nervous system (CNS). Herein we report an improved radiosynthesis of [18F]NT160 using 4-hydroxy-TEMPO which led to a significant improvement in radiochemical yield and molar activity. PET imaging with [18F]NT160, a highly potent class-IIa HDAC inhibitor, led to high-quality and high-contrast images of the brain. [18F]NT160 displayed excellent pharmacokinetic and imaging characteristics: brain uptake is high in gray matter regions, tissue kinetics are appropriate for a 18F-tracer, and specific binding for class-IIa HDACs is demonstrated by self-blockade. Higher uptake with [18F]NT160 was observed in the hippocampus, thalamus, and cortex while the uptake in the cerebellum was relatively low. Overall, our current studies with [18F]NT160 will likely facilitate the development and clinical translation of PET tracers for imaging of class-IIa HDACs biodistribution/expression in cancer and the CNS.