OBJECTIVETo explore the action mechanisms of RGW that may treat anemia through the integration of network pharmacology, molecular docking, molecular dynamics simulation, and experiment verification.RESULTIn particular, Ginsenoside Rg4, Ginsenoside Rg1, 3,3',4,4'-Tetrahydroxy 2-methoxychalcone, Ginsenoside F1, Glycyrol, Chalconaringenin 4'-glucoside, Licochalcone B, 4',7-Dihydroxyflavone, Glycycoumarin, and Ginsenoside Rh1 were the core components, while TP53, STAT3, PIK3R1, SRC, HIF-1α were the core targets. The GO and KEGG analyses indicated that RGW may modulate multiple biological processes and pathways, including the PI3K-Akt, HIF-1, and NF-kappa B signaling pathways, as well as EGFR tyrosine kinase inhibitor resistance. Molecular docking and molecular dynamics simulations showed good affinity between the active components and core targets of RGW, with stable binding within 100 nano seconds. Experiment verification revealed RGW could improve the routine blood markers of mice, and decrease the level of HIF-1α significantly.CONCLUSIONRGW may treat anemia by regulating the PI3K-Akt and HIF-1 signaling pathways. It demonstrates the potential pharmacological mechanism of RGW in the treatment of anemia and provides a reference for clinical application of this formula.