OBJECTIVES:To enhance the yield of 9α-hydroxy-4-androstene-3,17-dione (9-OHAD) from phytosterols, a phytosterol transport system was constructed in Mycobacterium sp. strain MS136.
RESULTS:9-OHAD can be produced via the controlled degradation of phytosterols by mycobacteria. This involves an active transport process that requires trans-membrane proteins and ATP. A phytosterol transport system from Mycobacterium tuberculosis H37Rv was constructed in Mycobacterium sp. strain MS136 by co-expression of an energy-related gene, mceG, and two integrated membrane protein genes, yrbE4A and yrbE4B. The resultant of the Mycobacterium sp. strain MS136-GAB gave 5.7 g 9-OHAD l-1, which was a 20% increase over 4.7 g l-1 by the wild-type strain. The yield of 9-OHAD was increased to 6.0 g l-1 by optimization of fermentation conditions, when 13 g phytosterols l-1 were fermented for 84 h in 30 ml biotransformation medium in shake flasks.
CONCLUSIONS:Phytosterol transport system plays an active role in the uptake and transport of sterols, cloning of the system improved the mass transfer of phytosterols and increased the production of 9-OHAD.