With bacterial 16S rRNA gene (rDNA) as molecular marker and by using PCR-DGGE technique, the fingerprints of bacterial community were constructed to study the effects of applying streptomycin sulfate, terramycin, and penicillin on the bacterial community in shrimp hatchery system. Within the 120 h experimental period, significant difference in the diversity of the bacterial community was observed between the treatments applied with 0.5 mg x L(-1) of test antibiotics and the control. In the control, the band patterns in 0-30 h were clustered into one clade, and those in 56-120 h were clustered into another; while in the treatments applied with test antibiotics, the band patterns in 0-56 h were clustered into one clade, and those in 72-120 h were clustered into another. After the sequencing of DGGE bands, the BLAST-N searches for sequence similarity showed great diversity of bacterial species, including culturable bacteria (mainly Sulfitobacter sp., Rhodobacteraceae sp., Photobacterium damselae, Synechoccoccus sp., Actinomycetales, Flavobacteriaceae, Filamentous photosynthetic, Mucus, and Vibrio harveyi) and some uncultured marine bacteria, among which, Rhodobacteraceae sp., Photobacterium damselae, Actinomycetales, Flavobacteriaceae, Mucus, and two unculturable bacteria were less affected by the three antibiotics, while Sulfitobacter sp., Filamentous photosynthetic, and other eight unculturable marine bacteria changed in different spatiotemporal patterns with the kinds of test antibiotics.