ABSTRACT
Simnotrelvir is an oral small-molecule antiviral agent targeting the 3C-like protease (3CL
pro
) of SARS-CoV-2, proven effective against the Delta variant with favorable pharmacokinetics and safety in preclinical study. In this study, we further evaluated the antiviral efficacy of simnotrelvir against a range of emerging Omicron variants, including BA.1, BA.4, BA.5, CH.1.1, XBB.1.5, XBB.1.16, EG.5, and JN.1.
In vitro
assays with Vero E6 cells confirmed that simnotrelvir exhibited robust antiviral activity across these variants, comparable to the Food and Drug Administration (FDA)-approved drug nirmatrelvir. Additionally, simnotrelvir demonstrated effective inhibition against several nirmatrelvir-resistant SARS-CoV-2 3CL
pro
mutants, including A260V, Y54A, (T21I + S144A), F140A, H172Y, and E166V. Importantly, simnotrelvir showed better potency against the E166V mutation compared to nirmatrelvir. Resistance selection studies revealed that BA.5 developed reduced sensitivity after 5 and 10 passages, increasing the IC
50
values by 3.2 and 4.5-fold, respectively, while HCoV-OC43 showed an 8.3-fold increase after 12 passages. Despite this, simnotrelvir’s overall efficacy remains strong. Furthermore, clinical trials demonstrated that combining simnotrelvir with ritonavir significantly shortened symptom resolution in COVID-19 patients. Genomic analysis of treated patients found random nucleotide substitutions but no significant mutations linked to 3CL
pro
resistance. In conclusion, simnotrelvir shows strong antiviral activity against SARS-CoV-2 variants and maintains a high barrier to resistance, reinforcing its potential as an effective therapeutic option for current and future SARS-CoV-2 variants.