Achyrocline satureioides have good therapeutic effects on nonsmall cell lung cancer (NSCLC). Nevertheless, it is still challenging to elucidate the active ingredients and mechanism of action due to their complex chemical composition. To address this, we innovatively combined network pharmacology with spatial metabolomics to comprehensively investigate the active components and the action mechanism in the present study. First, metabolomics of cells treated with the methanol extract of A. satureioides (ASM) utilizing high-resolution ultrahigh-performance liquid chromatography tandem mass spectrometry (HR-UHPLC-MS/MS) revealed 32 changed metabolites and 7 enriched metabolic pathways, confirming the anti-NSCLC effect of ASM and its impact on endogenous metabolites at the cellular level. Then, 69 chemical components in the ASM were identified using HR-UHPLC-MS/MS, followed by the screening of 6 core components and 10 core targets of anti-NSCLC with the help of network pharmacology and molecular docking. Lastly, quercetin, the most abundant compound among the six core active ingredients, was chosen for evaluating its anti-NSCLC effect and the potential mechanism using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). 51 altered endogenous metabolites were screened, and pathway enrichment analysis results were consistent with cell metabolomics, corroborating our network pharmacology predictions. In addition, we also observed the accumulation of three metabolites of quercetin in the tumor tissues. Network pharmacology combined with MSI elucidated the metabolic mechanisms by which A. satureioides treats NSCLC, offering new insights into herbal cancer therapies.