Compartmental models have emerged as robust computational frameworks and have yielded remarkable success in the fight against COVID-19. This study proposes a vaccination-based compartmental model for COVID-19 transmission dynamics. The model reflects the specific stages of COVID-19 infection and integrates a vaccination strategy, allowing for a comprehensive analysis of how vaccination rates influence the disease spread. We fit this model to daily confirmed COVID-19 cases in Tennessee, United States of America (USA), from June 4 to November 26, 2021, in a Bayesian inference approach using the Hamiltonian Monte Carlo (HMC) algorithm. First, excluding vaccination dynamics from the model, we estimated key epidemiological parameters like infection, recovery, and disease-induced death rates. This analysis yielded a basic reproduction number ( __-mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"-__ R 0 ) of 1.5. Second, we incorporated vaccination dynamics and estimated the vaccination rate for three vaccines: 0.0051 per day for both Pfizer and Moderna and 0.0059 per day for Janssen. The fitted curves show reductions in the epidemic peak for all three vaccines. Pfizer and Moderna vaccines bring the peak down from 8,029 infected cases to 5,616 infected cases, while the Janssen vaccine reduces it, to 6,493 infected cases. Simulations of the model by varying the vaccination rate and vaccine efficacy were performed. A highly effective vaccine (95% efficacy) with a daily vaccination rate of 0.006 halved COVID-19 infections, reducing cases from 8,029 to around 4,000. The results also show that the model's prediction accuracy for new observations improves with the number of observed data used to train the model.