Trophoblast cell surface antigen 2 (TROP2), a transmembrane glycoprotein highly expressed in a variety of epithelial cancers, has been considered as a primary therapeutic target for the development of antibody-drug conjugates (ADCs). OBI-992, an investigational TROP2-targeted ADC, is composed of a novel TROP2 antibody (R4702) conjugated to the topoisomerase I (TOP1) inhibitor exatecan through a hydrophilic enzyme-cleavable linker. This study aimed to characterize R4702 and OBI-992 in vitro. TROP2-targeted antibodies sacituzumab and datopotamab were employed as the comparators for R4702. ADCs sacituzumab govitecan (SG) and datopotamab deruxtecan (Dato-DXd) were used as benchmarks for OBI-992. Results revealed that R4702 binds to an epitope that is distinct from sacituzumab and datopotamab. The cytotoxicity of the OBI-992, SG, and Dato-DXd against different cancer cells is comparable despite they have different internalization profile. Upregulation of breast cancer resistance protein (BCRP) was observed in SG-resistant and Dato-DXd-resistant cells, but not in OBI-992-resistant cells. In addition, significant downregulation of TROP2 expression was detected with Dato-DXd-resistant cells and only slightly downregulation with SG- and OBI-992-resistant cells was observed. Moreover, substantial enhancement of cytotoxicity and DNA damage was found in the combination of OBI-992 with a poly (ADP-ribose) polymerase (PARP) inhibitor (talazoparib). Taken together, the findings in this study support further clinical development of OBI-992.