Arylethylamines represent a privileged scaffold in pharmaceutical compounds and form the backbone of many medical drugs, including those used for treating neurological diseases and pain. Their biomedical significance has inspired new synthetic methods that rely on transition metal-catalyzed aminoarylation reaction to an alkene, often in conjunction with a photoredox catalyst or a photosensitizer, and guided by a directing or stabilizing group. Here, we introduce a simple and effective method for azidoarylation of unactivated alkenes under transition metal-free conditions. Visible or near-UV light irradiation of readily available triarylbismuth dichlorides generates an aryl radical that selectively adds to the alkene, and the resulting homobenzyl radical is intercepted by an amine equivalent. This method offers a broad substrate scope and also enables aryl chlorination and arylcyanation of unactivated alkenes.