OBJECTIVEThis study aimed to investigate the effect and potential mechanism of miR-1298 in the progression of human trabecular meshwork (HTM) cells.MATERIAL AND METHODSExpression of miR-1298 was assessed by quantitative real time PCR (qRT-PCR), as well as in HTM-1 and HTM-2 cells. Mature miR-1298 mimic, miR-1298 inhibitor, and si-EIF4E3 and their corresponding controls were transfected into HTM-1 and HTM-2 to obtain stable HTM cells. Luciferase reporter assay was used to verify regulation between miR-1298 and EIF4E3. Cytotoxicity and Oxidative damage were assessed using commercial kits, and apoptosis was determined using flow cytometry. ECM and apoptosis related factors were determined using qRT-PCR and western blotting, as well as the pathway related factors.RESULTSThe expression of miR-1298 was significantly decreased both in glaucoma and HTM cells. MiR-1298 mimic could significantly inhibit the increase of cytotoxicity, apoptosis, accumulation of carbonylated proteins and ECM induced by COS, but miR-1298 inhibitor could obviously promote the increase effects caused by COS in HTM cells. EIF4E3 was a downstream target of miR-1298. Sliced EIF4E3 could significantly inhibit the increase effects induced miR-1298 inhibitor in HTM cells under COS. The expression levels of TGF-β2 and Smad4 were significantly increased, and Wnt3a and β-cantenin were obviously decreased under COS, and miR-1298 inhibitor could markedly promote this increase effect, while sliced EIF4E3 could reverse the effect of miR-1298 under COS.CONCLUSIONSmiR-1298 could protect HTM cells to against damage caused by COS via inhibiting TGF-β2/Smad4 pathway and activating canonical Wnt pathway.