Alzheimer's disease (AD) is the most common neurodegenerative disease all over the world. In the last decade, accumulating proofs have evidenced that neuroinflammation is intimately implicated in the pathogenesis of AD and activation of NOD-like receptor family pyrin domain-containing 1 (NLRP1) inflammasome can induce neuronal pyroptosis and in turn lead to neuronal loss in AD. Thioredoxin-1 (Trx-1), a multifunctional molecule with anti-inflammation in human tissues, displays crucial neuroprotective roles in AD. Our previous research preliminarily found that Trx-1 inhibition enhanced the expression of NLRP1, caspase-1, and gasdermin D (GSDMD) in Aβ25-35-treated PC12 cells. However, it is largely unknown if Trx-1 can inhibit NLRP1-mediated neuronal pyroptosis in AD neurons. In this study, it was verified that the protein levels of NLRP1, caspase-1, and GSDMD were significantly increased in Aβ25-35-treated mouse HT22 and primary hippocampal neurons. Suppression of Trx-1 with PX-12, a selective inhibitor of Trx-1, or Trx-1 knockdown further activated NLRP1-mediated neuronal pyroptosis. On the contrary, lentivirus infection-mediated Trx-1 overexpression in differentiated PC12 cells dramatically reversed expression of NLRP1, caspase-1, and GSDMD. Furthermore, Trx-1 overexpression mediated by adeno-associated virus in the hippocampal tissues of APP/PS1 mice likewise attenuated the activation of NLRP1-mediated neuronal pyroptosis, as well as reduced the hippocampal deposition of Aβ and ameliorated the cognitive function of APP/PS1 mice. In conclusion, this article predicates a novel molecular mechanism by which Trx-1 exploits neuroprotection through attenuating NLRP1-mediated neuronal pyroptosis in AD models, suggesting that Trx-1 may be a promising therapeutic target for AD.